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Abstract
Rotating machinery fault diagnosis is a field of intensive research, attracting the last years a particular interest
for data-driven methodologies such as Machine Learning and Deep Learning. In order to build such models,
the general assumption is that a sufficient number of healthy and fault samples, collected under various working
conditions, are available for model training. This assumption is often not realistic in real industry. This limi-
tation could be avoided by exploiting data sets collected at multiple industrial partners, but this is in practice
not easily feasible since companies prefer not to share their data for privacy reasons. Federated Learning (FL)
is an emerging machine learning approach proposed to train a global model without sharing data among users.
In this context an FL methodology for fault classification based on Convolutional Neural Networks (CNN) is
proposed in this paper. Local models are trained on local data sets, each one owned by a single client, i.e. an
industrial participant, and are then aggregated at a server level. In the baseline Federated Learning approach,
local models optimization fails to increase global accuracy with model aggregation in case there is significant
statistical heterogeneity in the data distributions among clients. Thus the aim of this paper is the proposal of an
enhanced strategy that accounts for adaptive local updates and the comparison of its performance with state-of-
the-art techniques. Each participant computes the local stochastic gradients within an adaptive interval, set by
the server at the aggregation step, when the models are loaded by the participants at the end of each communi-
cation round. The improved method is applied for bearing fault diagnosis and its effectiveness and accuracy are
evaluated in the case of imbalanced class distribution in rolling bearing fault local data sets, i.e. considering a
scenario where fault types are non-independent and identically distributed (non-i.i.d.) among clients. This case
is addressed in literature to be one of the main challenges in FL and is of practical interest since skewed data
sets are common in real-world factories.

1 Introduction

In recent years deep learning models have been intensively applied in fault machinery diagnosis problems
due to the growing interest for machine learning in the field of pattern recognition [2]. The bearings fault
diagnosis problem is particularly relevant for the industry due to the potential costs of unexpected production
interruption in manufacturing environments and in the energy sector. Detecting an anomaly or identifying a
fault in drive train bearings is still a challenging task due to the complex phenomenology of the degradation
process and the several variables in an operational setting. Gathering great amount of data is essential in this
application with data-driven approaches. Nevertheless, industries are not always willing to share the operational
data of their machines and in some environments raw data communication has important limitations or implies
additional costs. Federated learning is an emerging framework for training a deep neural network proposed
by Google in 2016 [3] which promises to cross the mentioned barriers, accounting for data privacy related
concerns and reducing communication costs when devices generate massive amount of data. For a fleet of
cyber-physical systems such as industrial machines with edge devices, FL leads to the possibility of exploiting
data sets from several industries to train a super model that outperforms state-of-the-art fault diagnosis neural
networks trained on a limited portion of the global data set. The FL methodologies are divided in two main
fields of application [4], the cross-device federated learning and the cross-silo federated learning. The cross-
device federated learning is meant for a massive number of mobile or IoT devices, up to 1010, where only a
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Figure 1: Clients drift behaviour in a two clients federated training [1]

fraction of clients are available over time. The cross-silo federated learning is suitable for data sets coming from
different organizations (2-100 participants) almost always available. Important properties usually satisfied by
participants in a cross-silo setting, in opposition to the cross-device one, are the following :
- Addressability: each client is identifiable and can be accessed by the system
- Statefullness: clients are likely participating all rounds of the computation, carrying state from round to round
- Reliability: the local training computation has a relatively low rate of failures
In this study a federated bearing fault diagnosis model is proposed for multiple industrial participants joining in
a cross-silo setting. A further characterization of the federated learning approach relates to the data partitioning.

In case of multivariate data, clients can hold different sets of features or sensor signals: this case is referred
as vertical federated learning. In many industrial applications where machines are monitored by the same
set of variables, such as the vibration signals for the bearing fault diagnosis problem, the data partitioning is
defined horizontal. Recently transfer learning techniques are joined in the federated learning framework [5].
One of the main challenges in training a federated learning model, especially in a cross-silo setting, refers to an
heterogeneous data distribution. Among industrial participants different machine configurations and operative
conditions implies non-i.i.d. data distribution causing client drifts, i.e. the local model updates toward local
optimal solutions, resulting in performance degradation of the global model [6]. Figure 1 from [1] illustrates the
implication of the client drift on the convergence to an optimal global solution. To deal with non-i.i.d. settings
researchers have proposed alternative aggregation algorithms in recent years, such as FedDyn [7], FedProx [8]
and Scaffold [9] to overcome the limitation of the baseline algorithm FedAvg [3]. In this study an adaptive
variation of FedAvg is presented and compared with the Centralized model and the AFL [10], focusing on a
new scheme for adjusting the aggregation interval to speed up convergence and to minimize communication
costs.

2 Proposed methodology

2.1 Problem definition

The federated learning problem in rolling bearings faults diagnosis is tackled in this study with particular
interest for the non-i.i.d. setting. The assumptions made in this framework are the following:
(1) Local data of the different participants are private, i.e. not shared during the training process. Nevertheless,
the server receives information on the local data sets size before initializing the global model.
(2) The server initializes the local model with the initialized global model parameters wg(n = 1) and the local
batch sizes.

2



(3) At the end of each round the server receives information regarding the results on the local validation set,
such as the local validation loss and the local validation accuracy, from each participant.
(4) The server receives and aggregates the local models from all participants.

Each client holds a local training data set Dk = {(xk
j,y

k
j)}
|Dk|
j=1 and a local validation data set Dval

k , where k
indicates the k-th participant. The j-th data sample xk

j ∈ RL is a supervised input with j-th label yk
j and length

L. In this study the input xk
j is a segment of a vibration signal associated with the faulty state of the machine

component or with its normal/healthy state, assumed to be known during the experimental machine operation
at a given working load.

2.2 Network architecture

The deep learning model chosen for the fault diagnosis task is a convolutional neural network that each
client trains locally. Convolutional neural networks are well suited for machine fault diagnosis due to their
property of learning patterns in timeseries such as monitored signals. Following [10], the network architecture
is shown in Figure 2 and described in Table 1. The activation functions are Rectified Linear Units (ReLU). As
will be described in section 2.3, the input is set to be bi-dimensional, as shown in the structure of the network
layers. Following [10] the optimizer chosen for training of the model is the Stochastic Gradient Descent (SGD)
with Momentum for faster convergence during local updating.

Figure 2: Sequential representation of the CNN layers

Layers CNN structure training CNN structure testing
Convolutional 2D (5×5, [1,16]) 2D (5×5, [1,16])
Maxpooling 2D (2×2) 2D (2×2)

Convolutional 2D (5×5, [16,32]) 2D (5×5, [16,32])
Maxpooling 2D (2×2) 2D (2×2)

Fully connected ([960,128]) ([960,128])
Dropout 0.5 −

Fully connected ([128,10]) ([128,10])

Table 1: Hyperparameters of the CNN layers

2.3 Input pre-processing

In order to realize a reliable fault diagnosis model, the monitored signals are pre-processed in order to ensure
fast convergence of the network parameters to the desired optimum solution and to enhance the performance
in the testing stage. Following [10] each vibration signal related to a state of the machine component at a
given stable working condition is segmented in shorter data samples. The original data sample undergoes
the transformations leading to the final input structure for the neural network. In detail, the pre-processing is
composed by the following steps:
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(1) The vibration signal is segmented in samples of length L data points. The segments are generated by a
moving window of length L that can overlap the preceding segment of a random length with a minimum of
0 and a maximum of L/2. Part of the samples and their labels are associated to the participant holding them,
defining the local training data set Dk and the local validation data set Dval

k . The remaining samples are hidden
to all participants in the test data set Dtest with their labels, being reserved for evaluation of the fault diagnosis
model performance.
(2) The sample x is normalized with a standard pre-processing technique, subtracting from the sample the mean

of their values and dividing by their standard deviation x′ =
x−E(x)√

Var(x)
.

(3) The 1D sample x′ is reshaped to provide the neural network with a 2D input x⋄ ∈RU×RV where U×V = L.
For simplicity x⋄ will be indicated as x, which is the general input of the neural network.

Figure 3: Sample segmentation and pre-processing

2.4 Federated learning approach

The aim of the federated learning approach is to provide a global fault diagnosis classifier fg(x) = f (wg,x)
resulting in a closer estimator of the perfect classifier than the local deep learning model fk(x) = f (wk,x)
trained on a local data set Dk. In order to achieve a global model, the participants, holding different private data
sets, train deep learning models sharing the same architecture. In the proposed framework, the global model
is obtained by aggregation of the weights of the local models wk, broadcasted by all participants k = 1, . . . , P.
The baseline algorithm for aggregation is the Federated Averaging (FedAvg) [3]. The pseudo code of FedAvg
with momentum SGD is described in the Algorithm 1. In the adaptive framework each local batch size is set
from the server depending on the local data set size that each client holds locally.

2.5 Proposed method

During the Federated Learning training each participant k broadcasts its local model parameters wk(t = τ)
to the server at the end of the local training interval. Each participant trains its local model starting from
the global model parameters wk(t = 1) = wg(n) and performing a forward pass and backpropagation at each
iteration t = 1, . . . ,τ on the local batch, with size

Bk = B1
|Dk|
|D1|

(1)

following [10], where |Dk| is the size of the local training set of participant k. The local training followed by
global aggregation goes on for a number of times N, equal to the total number of rounds. In this framework, the
server also receives from each participant its local training set size |Dk| before the initialization of the global
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Algorithm 1 FederatedAveraging with momentum SGD

Server executes:
Initialize wg(1)
for all rounds n= 1, . . . ,N do

for all clients k = 1, . . . ,P in parallel do
wk(τ)← ClientUpdate(k,wg(n))

end for
wg(n+1)← ∑

P
k=1

|Dk|
∑ |Di|wk(τ)

end for
ClientUpdate(k,w): // run on client k
B← (split Dk into batches of size B)
w(1)← w
initialize v(1)
for all local iterations t = 1, . . . ,τ do

v(t +1)← γv(t)+∇L( f ,w(t),b(t)) where b(t) ∈ B is the batch at iteration t
w(t +1)← w(t)−ηv(t +1)

end for
return w(τ) to server

Algorithm 2 Adaptive FederatedAveraging

Server executes:
Initialize wg(1)
Initialize local batch size Bk← LocalBatchSize(B1,{|Dk|}) (equation 1)
Initialize τ ← τstart

for all rounds n= 1, . . . ,N do
for all clients k = 1, . . . ,P in parallel do

aaaval
k (n)← LocalValidationAccuracy(wg(n),Dval

k ) // run on client k and return to server
wk(τ)← ClientUpdate(k,wg(n),τ,Bk)

end for
wg(n+1)← ∑

P
k=1

|Dk|
∑ |Di|wk(τ)

aaaval
g (n)← GlobalValidationAccuracy({|Dk|},{aaaval

k (n)}) (equation 2)
if n > 1 then

IIIa(n)← PerformanceIndex(aaaval
k (n−1),aaaval

k (n)) (equation 3)
end if
if n = mW and |min(IW

a )|> |max(IW
a )| and τ ̸= 1 ( IW

a = {Ia(n−W +2), . . . , Ia(n)}, m ∈N+) then
τ ← AggregationIntervalUpdate(τstart ,aaaval

g (n)) (equation 6)
end if

end for
ClientUpdate(k,w,τ,B): // run on client k
B← (split Dk into batches of size B)
w(1)← w
initialize v(1)
for all local iterations t = 1, . . . ,τ do

v(t +1)← γv(t)+∇L( f ,w(t),b(t)) where b(t) ∈ B is the batch at iteration t
w(t +1)← w(t)−ηv(t +1)

end for
return w(τ) to server
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model and the local batch sizes. Furthermore, the server receives with the local models the local accuracies
aaaval

k (n) of the global model on the local validation sets, computed before local training, at the beginning of each
round n ∈ {1, . . . ,N}. The global accuracy is defined as:

aaaval
g (n) =

P

∑
k=1

|Dk|
∑

P
i |Di|

aaaval
k (n) (2)

and is computed by the server at the aggregation step, where P indicates the number of participants. From
the global accuracies of two consecutive rounds we can define an index to evaluate how the global models
accuracies on the validation set are improving through aggregation rounds at the given aggregation interval:

Ia(n) =
aaaval

g (n)−aaaval
g (n−1)

1−max
(
aaaval

g (n),aaaval
g (n−1)

) (3)

Due to fluctuations of the accuracies values, an observation window of width W is chosen to store W consecu-
tives global accuracies values aaaval

k (n−W +1), . . . ,aaaval
k (n) to compute at server level W−1 values of Ia:

IW
a =

[
Ia(n−W +2), . . . , Ia(n)

]
(4)

At server level every W rounds during the aggregation step the server checks if∣∣min
(
IW
a
)∣∣> ∣∣max

(
IW
a
)∣∣ (5)

or max
(
IW
a
)
< 0, which in practice is never verified. If the condition is satisfied, the aggregation interval is

recomputed as:
τ = max

(⌊
τstart

(
1−aaaval

g (n)
)⌉
,1
)

(6)

where τstart is the initial value of the aggregation interval and
⌊
∗
⌉

is the “round to nearest integer” operator. The
max operator is introduced for the case τstart

(
1−aaaval

g (n)
)
< 1 which rarely verifies in practice. Once τ = 1, the

server deactivates the adaptive aggregation interval algorithm ensuring τ = 1 till training ends.

3 Application of the methodology

3.1 Data set description

The methodology is applied to a data set for bearing fault diagnosis. The data set considered in this study is
provided by the Case Western Reserve University [11] and is composed by vibration signals of an accelerometer
conveniently placed to monitor the drive end (DE) bearing, presented in Figure 4. The accelerometer signals
from this data set are segmented to generated samples from ten classes, one associated with the healthy state of
the bearing and nine associated with three different type of faults and three different sizes for each fault type.
The class labels are shown in Table 2. The data from the experimental tests at working load 0 HP are considered
in this analysis.

From the original time signals samples are generated considering a window with L = 500 that includes one
revolution of the shaft considering a rotational speed of 1797 rpm/min and a sampling frequency of 12 kHz.
After normalization of the sample, this is reshaped in an input of size 20× 25 for the first 2D convolutional
layer of the neural network.

3.2 Non-i.i.d. experimental setting

In order to evaluate the effectiveness of the adaptive aggregation interval algorithm, the methodology is
applied on three participants in a non-i.i.d. setting. The classes are distributed according to the following
partition:
D1 = {(x1

j ,y
1
j)}
|D1|
j=1 where y1

j ∈ {c0,c1,c2,c3,c4}
D2 = {(x2

j ,y
2
j)}
|D2|
j=1 where y2

j ∈ {c5,c6,c7}
D3 = {(x3

j ,y
3
j)}
|D3|
j=1 where y3

j ∈ {c8,c9}
In the same way the data sets Dval

k are defined for each participant. The number of samples generated for each
class is described in the Table 3.
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Label Fault class Severity (diameter, depth) Working condition
c0 - - 0 HP
c1 Inner race 0.18 mm, 0.28 mm 0 HP
c2 Ball 0.18 mm, 0.28 mm 0 HP
c3 Outer race 0.18 mm, 0.28 mm 0 HP
c4 Inner race 0.36 mm, 0.28 mm 0 HP
c5 Ball 0.36 mm, 0.28 mm 0 HP
c6 Outer race 0.36 mm, 0.28 mm 0 HP
c7 Inner race 0.53 mm, 0.28 mm 0 HP
c8 Ball 0.53 mm, 0.28 mm 0 HP
c9 Outer race 0.53 mm, 0.28 mm 0 HP

Table 2: Class labels and related fault description

Figure 4: The experimental test rig configuration of the CWRU

3.3 Centralized model

In order to evaluate the performance of our method the baseline centralized model is trained on the data set
D = D1∪D2∪D3 and tested on the data set Dtest . The training is monitored on a validation set Dval = Dval

1 ∪
Dval

2 ∪Dval
3 . The batch size of the centralized model is set as B = 128. The learning rate and the momentum

term are set respectively to η = 0.05 and γ = 0.5. For training and testing the cross-entropy function has been
adopted for loss function computation.

3.4 Federated learning methods

The Adaptive Federated Averaging method is applied to the three participants considering a batch size
B1 = 64 for the first participant with the larger data set. The cross-entropy loss function has been adopted.
The learning rate and the momentum term are set respectively to η = 0.05 and γ = 0.5 as for the centralized
model. For the Adaptive Federated Averaging method described in Algorithm 2, in this application W = 6 and
τstart = 10. The proposed method is compared with the Adaptive Federated Learning (AFL) from [10], which
includes the personalized batch size and an adaptive aggregation interval to reduce communication costs. The
AFL model is tested with the same architecture and the same hyperparameters of the proposed methodology,
with adaptive aggregation interval parameters following [10], i.e. W = 15, δ = 5, decay = 0.95. The proposed
algorithm needs one additional parameter instead of the three mentioned, reducing complexity.
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Dk local training data set Dval
k local validation data set Dtest global test set

Number of samples for class ci 192 64 64
Number of classes for data set 5,3,2 5,3,2 10

Table 3: Samples and class distribution description

(a) Global validation accuracy (b) Global validation loss

Figure 5: Training performance on the validation data set for FedAvg, CL and the proposed method

3.5 Results

The centralized, the Adaptive FedAvg and the AFL monitored global validation loss, the global validation
accuracy and the aggregation interval are shown in Figures 5, 6, 7. Similarly to the validation accuracy, the
global validation loss is computed at server level from the validation loss evaluated from each participant on
the local validation set at round n:

Lval
g (n) =

P

∑
k=1

|Dk|
∑

P
i |Di|

L( f ,wg(n),Dval
k ) (7)

Where L( f ,wg(n),Dval
k ) := 1

|Dval
k |

∑(x,y)∈Dval
k
L( f ,wg(n),x,y)

The models have been implemented in Fed-BioMed v.4.3 [12]. For the adaptive methods, in order to select
the final model to be tested, when τ = 1 the server stores the global model parameters wg(n) for each round
n with the global validation loss. At the end of the training the global model with minimum global validation
loss is retained for testing. The Table 4 shows the test results on four metrics: Precision, i.e. the average for
all class of the fraction of instances correctly classified as belonging to a specific class out of all instances the
model predicted to belong to that class, Recall, i.e. the average for all class of the fraction of instances in a class
that the model correctly classified out of all instances in that class, Accuracy, i.e. the proportion of correctly
classified cases from the total number of objects in the data set, and F1-score, i.e. the weighted average of
Precision and Recall.

Results of the Federated Learning models on the test set
Model Precision Recall Accuracy F1-Score Round Epochs

CL 0.979828 0.978125 0.978125 0.978168 - 50
FedAvg adaptive 0.971875 0.973255 0.971875 0.971860 193 ∼ 50

AFL 0.956630 0.9484375 0.9484375 0.9483477 196 ∼ 36
FedAvg(τ = 10) 0.907337 0.8890625 0.8890625 0.888795 75 50

Table 4: Performance on the test data set
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(a) aggregation interval along rounds (b) aggregation interval along epochs

Figure 6: Adaptive aggregation interval during training for the compared models

(a) Global validation accuracy (b) Global validation loss

Figure 7: Training performance on the validation data set for the AFL and the proposed method

(a) Centralized model (b) AFL (c) Adaptive FedAvg

Figure 8: Confusion matrix comparison between the centralized and the federated models
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3.6 Conclusions

The Adaptive Federated Learning method has been compared to the AFL method to validate an algorithm
that adaptively adjusts the aggregation interval for reducing communication costs and for enhancing conver-
gence rate. The method has been tested on a public data set for bearing fault diagnosis, partitioned in a non-i.i.d
fashion in a three clients setting. In future development of the methodology personalized federated learning
(PFL) [13], which aims to provide a personalized model for each client, and the federated transfer learning
(FTL) are worth to be investigated for the bearing fault diagnosis problem in a cross-silos scenario.
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