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Abstract
This work presents a framework for stochastic updating for verifying and validating a finite element (FE)-based
model - the Digital-Twin - of a composite plate, considering temperature influence on Lamb wave propagation.
It begins with a deterministic updating procedure to find optimal mechanical properties, followed by a stochastic
updating procedure to obtain probability density functions for meaningful parameters. The stochastic updating
procedure is divided into two steps: a sensitivity analysis using Sobol Indices and a Bayesian inference process
using Markov-chain Monte Carlo (MCMC) simulations and the Metropolis-Hastings sampling algorithm. To
reduce the computational time required for the MCMC process, the work proposes using a surrogate model based
on artificial neural networks (ANNs). The ANN can be trained using parallelized Monte Carlo simulations, in
contrast to the sequential nature of the MCMC process. This approach reduced the time required for updating
rounds by 450 times in the studied case without compromising the accuracy of the resulting probability density
functions for model parameters.

1 Introduction & Methodology Framework
Lamb waves, which are ultrasonic guided elastic waves, play a vital role in structural health monitoring

and evaluation of plate-like structures. However, accurately modeling Lamb wave propagation in composite
structures is challenging due to their inherent heterogeneity and the influence of varying physical properties
affected by the environment. To address these challenges and ensure consistency with experimental data,
numerical models must be updated using stochastic approaches that account for environmental variations.

In this paper, we propose a Bayesian framework for stochastically updating a numerical model for Lamb
wave propagation in composite structures, forming a Stochastic Digital Twin. The framework, as illustrated in
Fig. 1, involves a modified least-squares method to identify mechanical properties and a sensitivity analysis
using Sobol indices to assess the influence of identified parameters on the model response. Parameters with
low contributions are considered determined quantities, while those with high contributions are updated using
Bayesian inference with non-informative prior distributions derived from the deterministic optimization scheme.
The Bayesian inference process is performed using Markov-Chain Monte Carlo (MCMC) simulations and the
Metropolis-Hastings sampling algorithm. To overcome computational limitations, we propose an artificial
neural network (ANN) surrogate model that can be trained using parallelized Monte Carlo simulations. This
approach significantly reduces the time required for updating the model without compromising the accuracy of
resulting probability density functions for model parameters.
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By combining Bayesian inference, stochastic updating, and a digital twin framework, our approach enables
accurate prediction of Lamb wave propagation in composite plates, considering uncertainties and variations
introduced by the environment. The resulting Stochastic Digital Twin holds promise for enhanced structural
health monitoring and evaluation of composite structures.
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Figure 1: Proposed framework structure with deterministic and stochastic updating schemes.

2 Experimental Setup and Numerical Model
The experimental setup shown in Fig. 2a consists of a 500 x 500 x 2 mm3 carbon fiber reinforced polymer

(CFRP) plate with 10 layers of plain weave fibers. Four 6.35 mm PbZrTi (PZT) SMART Layers are bonded
to the plate with epoxy resin. PZT 1 is the actuator, whereas PZTs 2, 3, and 4 serve as sensors. Additional
information on this dataset is available on GitHub [1].

The digital twin of the CFRP plate is created using a finite element (FE) model with continuum shell
elements (SCR8) in ABAQUS/Explicit, as illustrated by Fig. 2b. The model represents the CFRP plate with
ply-based properties and an orthotropic laminate using 3 integration points per lamina. A spatial resolution of
at least 20 nodes per wavelength and a time step based on the maximum expected frequency (250 kHz) are used
for numerical stability. Strain data within the sensor region is transformed to voltage using the method proposed
by Sirohi and Chopra [2].

3 Application of the Identification Framework for Digital Twin Development
By combining experimental data with numerical modeling techniques, the framework enables the develop-

ment of a digital twin that closely replicates the behavior of the physical structure. In the initial deterministic
updating process, the mechanical properties of the materials in the numerical model are adjusted to match the
response signals from sensors 2 and 3 with the experimental results, as shown in Fig. 3a(a). This step involves
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Figure 2: Experimental setup and numerical model.

2



updating parameters such as Young’s modulus in two perpendicular directions (𝐸1 and 𝐸2), Poisson’s ratio (a12),
shear moduli in and out of the plane (𝐺12 and 𝐺23, respectively), and density (𝜌). These material properties are
critical in accurately simulating the behavior of the structure. The initial range of values for these parameters
is determined based on previous work. By refining these properties, the digital twin can better capture the
structural response. Figure 3a(a) compares the model response using initial and optimized properties with the
experimental results.
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Figure 3: Deterministic updating and sensitivity analysis results. (a) comparison between initial ( ) and optimal
models ( ) and experimental ( ) results for PZTs 2 (above) and 3 (below); metrics used in sensitivity analysis;
and (c) first-order Sobol indices

Following the deterministic adjustment, a sensitivity analysis is conducted to evaluate the influence of each
parameter on the digital twin’s behavior. Sobol indices are employed to quantify the impact of parameters such
as 𝐸1, a12, 𝐺12, and 𝜌 on the model’s response. Perturbing each parameter within a certain range, the sensitivity
analysis measures metrics such as time of flight (TOF) and maximum envelope value (AMP) of the first wave
packet, as shown in Figs. 3b and 3b. The parameters a and 𝜌 are determined based on the optimization results,
whereas the remaining parameters are considered undetermined and need to be treated as random variables.
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Figure 4: Surrogate model evaluation. (a) 𝐸1 Histogram for training ( ■ ), validation( ■ ) and test( ■); (b) 𝐺12
Histogram; and (c) Comparison between surrogate model (◦) and FE model ( ) for different values of test data

To expedite the random-walking process in the Bayesian updating phase, an artificial neural network (ANN)
surrogate model is introduced as a substitute for the computationally expensive finite element (FE) model. The
ANN surrogate model, comprising the multilayer perceptron with two fully connected hidden layers, takes 𝐸1
and 𝐺12 as input parameters and predicts the time series output. Remarkably, the surrogate model closely
replicates the numerical model’s response without noticeable differences. Furthermore, the surrogate model
demonstrates significantly faster evaluation times, with each prediction taking less than a second compared to
several minutes for the FE model.
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The Bayesian inference process is then applied to experimental data obtained at 20◦C, utilizing both the
numerical model and the surrogate model. By employing a random walk algorithm, the parameters in the
identification framework are iteratively updated, starting from the center of the parameter search space. A
burn-in period is implemented to discard the initial part of the sampling process, ensuring convergence of the
algorithm. The resulting probability distributions for 𝐸1 and 𝐺12 are compared between the numerical model
and the surrogate model. Both are illustrated in Figs. 5a and 5b, respectively. Surprisingly, both models yield
similar distributions, validating the surrogate model’s effectiveness in capturing the uncertainty of the digital
twin’s parameters.
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Figure 5: Restuls for the stochastic updating procedure: (a) 𝐸1 posterior histograms and PDFs using the FE
model (■) and the ANN (■), (b) 𝐺12 posterior histograms and PDFs , and (c) Experimental ( ), model mean
result ( ) and model confidence interval ( ■ ) signal comparison for 20◦C in PZT 2 and PZT 3

The confidence interval of the digital twin’s output can be determined by evaluating the models with values
within the 99%percentile of the results, as shown in Fig. 5(c) . This uncertainty quantification enables a better
understanding of the digital twin’s predictions and facilitates decision-making based on the confidence level of
the model’s output.

4 Final Remarks
In this study, we presented a Bayesian framework for stochastically updating a numerical model for Lamb

wave propagation in composite structures, emphasizing the aspect of digital twin development. By combining
a modified least-squares method, sensitivity analysis using Sobol indices, and Bayesian inference, accurate
probability density functions for model parameters were obtained. The use of MCMC simulations and the
Metropolis-Hastings sampling algorithm ensured robust parameter estimation. Additionally, the introduction
of an ANN surrogate model enabled faster computations through parallelized Monte Carlo simulations, without
compromising the accuracy of the resulting probability density functions. This methodology provides valuable
insights for adjusting Lamb wave signals in composite structures.
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