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Abstract 
The phase difference between the excitation force and the response of a resonating free piston engine 

generator, has been examined  by numerical simulation, for both resonant starting, and self-excited resonant 

operation. This is achieved by using a simple nonlinear model of a resonating free piston generator, first 

undergoing resonant starting, then undergoing a self-excited resonant Otto cycle.  The resonant starting 

results show that the system is highly sensitive to very small changes in both amplitude and frequency. The 

resonant starting results also show that with harmonic excitation at the operational resonant frequency, the 

response phase is only moderately delayed behind the excitation.    

 

Under resonant operating conditions, the phase difference between the fundamental harmonic component of 

the self-excitation, and the fundamental harmonic component of the displacement response have also been 

obtained by simulation, and found to be very small, suggesting the excitation and response are almost in 

phase. The implications of this finding in making the transition from resonant starting to self-excited 

operation (involving fired combustion) are assessed and appropriate guidance given.  

 

1 Introduction 

Free-piston engine generators (FPEGs) offer a number of important benefits over conventional generators, 

the latter comprising an engine coupled directly to an electrical generator [1][2]. The benefits of FPEGs 

include higher efficiencies, greater compactness, and lighter weight, resulting in significantly higher 

gravimetric and volumetric energy densities, compared to alternatives. In addition, the unlimited scalability 

to high power of an FPEG, and the possibility of electrically-controlled variable compression ratio, offers 

fuel flexibility and the potential to run on zero carbon fuels [3 - 11].  

Resonating FPEGs [12][13] offer significant advantages over FPEGs that use a bounce chamber. These 

advantages include more precise control, a significant reduction in electrical machine currents, and a 

corresponding reduction in electrical power losses. The fitting of a stiff resilient member within an FPEG, 

creates a mass-elastic system capable of mechanical resonance. Resonating rotary FPEGs [12] offer 

additional advantages over resonating linear FPEGs, in particular, no loss of symmetry. In terms of dynamic 

characterisation in operation, a resonating FPEG is actually a nonlinear (stochastic) self-excited system. The 

main source of nonlinearity stems from the polytropic gas compression and expansion processes that take 

place as the free pistons move in the cylinder. The categorisation of the system as ‘self-excited’ stems from 

the combustion ‘timing’ which largely depends on the particular displacement of the pistons.  

The use of mechanical resonance can also be important for starting a resonating FPEG. In particular, 

resonance is an essential way of getting a resonating FPEG up to the required displacement amplitude 

needed for combustion to occur since the resilient members tend to be very stiff. Starting can in principle be 

achieved by motoring the electrical machine with a relatively low-power external excitation source, such as a 

harmonic or optimal exciter signal [14]. This is an analogous procedure to the use of square wave external 

excitation source for starting an FPEG fitted with a bounce chamber [15] - although in the latter case, 

resonance is not necessarily exploited.  
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A significant difficulty using mechanical resonance to start a resonating FPEG, is first to recognise a 

fundamental difference between starting and steady operation. In resonant starting, the fundamental 

harmonic component of the steady-state response (of any lightly damped linear system), is very close to π/2 

radians out-of-phase from the external harmonic excitation. But in operation, under self-excited resonant 

conditions, the phase difference between the dynamic response and the excitation, can be significantly 

different from π/2. This reality leads to three questions.  

First, in resonant starting, how does system nonlinearity (from adiabatic compression and expansion 

processes) affect the phase difference between the excitation and response? (which, for a linear system, is 

close to π/2). Second, in operation, what is the phase difference be between the self-excitation process 

(resulting from combustion) and the corresponding dynamic response?   The third question is how is it 

possible to be guided in making the transition from externally-excited resonance (used for starting) to self-

exited steady-state resonant operation?  In this paper, these three questions are examined by modelling and 

simulation. The objective is to provide clear guidance on how to transition between resonant starting and 

subsequent self-excited operation of a resonating free-piston engine generator.     

2 A dynamic model for resonating free-piston generator operation 
Here, a linear resonating free piston generator is modelled by first considering the physical model 

displacement variables. Then, an equation of motion is constructed to include a description of the processes 

involved.  

 
2.1  The physical model displacement variables and the equation of motion 

Figure 1a shows a simple diagram of a resonating linear FPEG comprising: opposed pistons, generators and 

rods, and very stiff springs. The various displacement variables associated with the generator simulation 

model are shown in Figure 1b. A single side of an opposed-piston FPEG is shown in Figure 1a by assuming 

symmetric operation of an opposed-piston generator.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

    Figure 1a: Resonating linear free piston generator 
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Focusing on a two-stroke Otto cycle, in particular, where key events occur spatially, four different parts of an 

Otto cycle can be identified. The variable  in Figure 1b is the instantaneous position of piston (crown) 

relative to the equilibrium position. The equilibrium position is the location of the piston crown when the 

generator is stationary.  is the sparking position (i.e. the distance relative to equilibrium position) where 

instantaneous combustion is assumed to occur causing a rise in cylinder pressure. Position  (which has a 

negative length value) is the distance from the equilibrium position to the scavenge ports. Distance L is the 

length along the cylinder from the scavenge ports to the midpoint of the cylinder in an opposed piston 

engine. Since L+  gives the distance from the equilibrium position to the midpoint of the cylinder, in a 

simulation if x  L+ , then the very undesirable event of contact between the opposed pistons would have 

been made.  Application of Newton’s 2nd law to the piston and electrical machine, gives an equation of 

motion: 

 

                                                                                   (1)   

                  

where m is the total mass of the moving assembly (i.e. the piston, rod, and the moving electrical machine),  

is the piston area,  is the cylinder pressure (which is a nonlinear function of the piston displacement), 

 is an electrical machine constant, k is the helical spring stiffness,  is the motoring (excitation) force, 

and ) is a friction force.  Here for simplicity, it is assumed that the scavenging model is one where 

exhausting occurs at the same instant as the scavenging ports are uncovered i.e. when the piston position is at 

- . This is more appropriate for uniflow scavenge than loop scavenge.  The electrical generator load model 

is assumed to be proportional to the electrical machine velocity, such that the opposing force while 

generating, is .  The instantaneous generated power (assuming 100% efficient generation) is then cg .   

 

The cylinder pressure  is assumed to follow adiabatic compression from scavenge port closure until to 

the sparking position.  Instantaneous combustion heat release is assumed to occur when the sparking position 

is reached, leading to a rise in cylinder pressure dPmax producing maximum pressure of Pmax. Pressure above 

the sparking position is assumed to remain at Pmax, although, by suitable choice of sparking position, it is 

possible to arrange in a simulation, for the maximum piston motion to never exceed the sparking position. 

Adiabatic expansion is assumed from Pmax to P0, i.e. to the point where the scavenge ports are uncovered. 

No distinction is made between the exhaust port level, and scavenge port level. Exhausting is therefore 

assumed to take place at the same time as scavenging.  The cylinder pressure model from x=Xsc to x=Xsp is:  
 

                                                                                                          (2)  

 

where γ is the adiabatic index, Pscav is the scavenge pressure,  is the effective initial 

volume, and is the instantaneous volume.  During expansion, from 

x=Xsp to x=Xsc, with Pmax as the peak pressure after heat release, the cylinder pressure is given by:     

 

                                                                                                          (3) 

 

3 A bi-linear model for conditionally-stable cyclic motion without control 
In general, a free piston engine does not have a mechanical cycle because the piston does not necessarily 

return to the same position. In fact, feedback control is generally needed in a resonating FPEG to ensure that 

the cycle returns to the same starting position [12]. Without feedback control the cycle will be unstable – 

either the generator will stall, or the piston amplitude will continue to grow until collision takes place 

between the piston crowns. A typical control strategy involves multi-variables, to achieve control of fuel (i.e. 

energy in), and spark timing to control the start of heat release, and control of the electrical generator load 

(i.e. output energy). But because the objective is to understand the phase differences between excitation and 

response, feedback control will not be used to create a stable cycle. Rather, a passive change in the generator 

load parameter is achieved for part of the cycle – this enables a conditionally-stable cycle to be achieved. 

More will be said about this in Section 5.    
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4 Nonlinear phase-shifting during resonant starting 
The first phase-shifting question of interest, is what happens to the phase difference between the excitation, 

needed for (resonant) starting, and the dynamic response as a result of adiabatic compression and expansion 

which, although of much weaker stiffness than the resilient springs, introduce significant nonlinearity. 

Various strategies are available to start a free piston engine [14]. Here only the simplest strategy will be 

considered, namely exciting it with a single harmonic at its resonant frequency. Were the system to remain 

entirely linear, for any periodic external excitation, theory suggests that the fundamental harmonic 

component of the steady-state response (for a lightly damped linear system), would be very close to π/2 

radians out-of-phase from the fundamental harmonic component of the excitation (the phase difference 

between the excitation and the response, at the natural frequency, is exactly π/2 radians regardless of the 

damping level (and if the damping is light, the natural frequency and the resonant frequency are very close). 

To answer this question, the phase difference between the fundamental components of the excitation and 

response is obtained by numerically using model Equation (1) driven externally by sinusoidal excitation 

involving adiabatic compression and expansion but without ignition occurring.     

 

Here, a generator of moving mass m=0.42 kg is assumed in Equation (1), and the resilient spring stiffness      

k = 60000 N/m. A single fixed value for the electrical machine coefficient power take-off is assumed of 

magnitude cg=5.20, which effectively appears as a ‘damping’ coefficient in Equation (1). For these 

parameters, ignoring the nonlinear adiabatic effects, the ‘damping’ factor is 1.63% critical, i.e. very light 

damping. The small friction force  is ignored.  A sinusoidal excitation force e(t) at the nonlinear 

resonant frequency, was chosen of fixed amplitude 215 N. In computing the phase difference, the Matlab 

initial value function ode45 was used to solve for 100 transient cycles.  A complete period of the last cycle of 

the nonlinear response was used to establish the phase difference between the excitation and the phase by 

using the Matlab Fourier analysis function fft to obtain the Fourier coefficients. Were the system entirely 

linear, and if it were excited at the linear resonant frequency of 59.98 Hz, the theoretical phase difference 

would be -89.0638° (i.e. a delay very close to π/2 radians out-of-phase). However, exciting at the actually 

(nonlinear) resonant frequency of 78.994 Hz, the phase difference between the response fundamental 

harmonic and the excitation = -15.25°.  Figure 2 shows the simulated excitation (top) and (nonlinear) 

resonant response (bottom).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Harmonic excitation (top) and response (bottom) showing steady-state being reached.  

 

 

To illustrate the computed nonlinear phase difference, which is a massively reduced delay, Figure 3 (top) 

shows a section of the last cycle of the excitation (which actually includes two plots, namely, the chosen 

sinusoidal excitation function, plus an additional plot of the excitation function obtained from within the 

ode45 function, to ensure complete synchronicity - confirmed by no evidence of any difference). Figure 3 

(bottom) shows the corresponding section of the fundamental harmonic of the displacement response. 



5 

 

 

.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The excitation (top) and the steady-state displacement response (bottom)  

 

 

5 The phase difference between self-excitation and the resonant response.   
The next question concerns the phase difference between the self-excitation process (resulting from timed-

combustion) and the corresponding dynamic response. Here, the assumption is that the generator has been 

successfully started, and that a continuous series of stable cycles is achievable. In actual fact, as mentioned 

previously, stable operation of a resonating FPEG is generally only possible with feedback control of both 

the combustion heat release and the electrical generator [12]. This applies even without the influence of 

cycle-by-cycle stochastic variability in the combustion pressure. Thus, even without cycle-by-cycle 

variability, this effectively means that the combustion gas pressure P(x(t)), and the generator coefficient cg in 

Equation (1),  need to be actively controlled to ensure that a target piston displacement is maintained. In 

actual fact, what ideally needs to be found, is the phase difference between the combustion excitation and a 

stable displacement response without active control being involved, because control itself will significantly 

change the phase difference.   

 

To address this question, a way has to be found to create a conditionally-stable (repetitive) cycle without 

feedback control.  To do this, the solution is to choose switched values of the generator coefficient cg to 

ensure that the generator state vector returns precisely to the same starting point. This does not actually 

guarantee stability in the large (which is why it is referred to as conditional stability). Two values of cg are 

however sufficient to achieve conditional stability – a constant value during compression, and a different 

(larger value) during expansion (the power stroke).  In practice, different values of cg can only be 

implemented, at the frequency needed, using power electronic switching.  

 

5.1 Numerical simulation of a conditionally-stable power cycle 
Using the Matlab ode45 function to solve Equation (1), and by adopting the following: the same mass and 

stiffness parameters as in Section 4, switched values of the generator coefficient cg, an Otto cycle, and an 

instantaenous heat-release model, and specified positions for the scavenge ports and spark timing,  a 

conditionally-stable displacement response cycle can be obtained. The relevant parameters for the simulation 

are shown in Table 1. The performance and efficiency results from the simulations are shown in Table 2. 

Figure 4 shows the simulated cylinder PV diagram for the cycle, i.e. the combustion pressure versus the 

displaced volume for the generator in a conditionally-stable power cycle 
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Figure 4: Simulated combustion pressure versus displaced volume (i.e. the PV diagram)  

for the generator in a conditionally-stable resonant Otto cycle.  

 

 

 

Generator 

Parameters 

Cylinder 

length 

= 28.16 mm. 

 

Bore = 29 mm. 

 

Mass of moving 

assembly  

m = 0.42 kg. 

 

 

 

Resilient member 

Spring stiffness 

k = 60000 N/m 

Magnitude of 

generator coefficient 

during compression: 

Cg = 5.2;  

 during expansion: 

Cg = 9.9 

 

Key event 

positions 

Distance of 

displacement x from 

equilibrium to 

scavenge ports  

= -12.8 mm. 

Distance of 

displacement x from 

equilibrium to spark 

ignition event  

= 14.0812 mm. 

  

 

Simulation and 

model details 

 

Number of discrete 

points per cycle 

= 80000. 

Start displacement 

= -25.6 mm; 

End displacement 

= -25.6002 mm. 

Difference between 

start and end 

displacement 

= -0.0002097 mm. 

Linear damping 

factor (during 

compression) 

= 1.63% critical. 

 

Table 1:  Generator, simulation, and model parameters 

 

 

 

Temperatures 

and pressures  

 

Start of 

compression 

temperature: 

300 K 

at pressure of 

1 bar. 

End of 

compression 

temperature: 

1033.48 K 

at pressure of 

75.88 bar. 

After heat-

release 

temperature: 

1444.45 K 

at  pressure 

106.06 bar. 

End of 

compression 

Temperature : 

419.29 K at 

pressure of 

1.40 bar. 

After 

scavenging 

temperature: 

300 K at 

Pressure of 

1 bar 

 

Power 

 

 

Target power 

= 500 W 

Average 

mechanical 

power 

= 357.1367 W 

Average 

electrical 

generator power 

= 357.1126 W. 

Peak 

instantaneous 

mechanical power 

= 16856 W 

Peak 

instantaneous 

electrical power 

= 892 W 

 

Efficiencies  

 

Otto efficiency 

= 70.9747% 

 

Indicated thermal 

efficiency using 

(Qin+Qrej)/Qin  

= 70.9723%. 

Indicated thermal 

efficiency using 

WD/Qin = 

71.4511%. 

Generator 

efficiency 

(electrical power 

out/target power) 

= 71.4225%.   

Assumed 

electrical 

machine 

efficiency = 

100% 

 

Phase 

information 

Phase of the 

fundamental 

harmonic  

component of 

excitation force 

= -96.16° 

Phase of the 

fundamental 

harmonic 

component of 

displacement 

response 

= -91.29° 

Phase difference 

between the 

fundamental 

harmonic 

components of 

the output and 

input = +4.86° 

 

Notation: 

Positive phase 

is advance; 

Negative phase is 

delay. 

 

 

Table 2:  Simulation results 
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For the parameters used in Equation (1) as given in Table 1, Figure 5 shows the simulated conditionally-

stable force-displacement trajectories for the combustion side of the generator (left), and correspondingly, for 

electrical machine side (right). The area under left-hand Figure 5 gives the (indicated) mechanical energy 

released within the cycle,  whereas the area under right-hand Figure 5 gives the electrical energy generated 

within the cycle (assuming 100% efficient electrical energy conversion).  Figure 6 shows, over one 

conditionally-stable cycle, the simulated instantaneous and average mechanical power versus time. Figure 7 

shows the corresponding instantaneous and average electrical power versus time.  

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5: Force-displacement trajectories: for the combustion side of   

the generator (left), and corresponding for the electrical machine (right).   

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Instantaneous and average mechanical power versus time over a cycle.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7: Instantaneous and average electrical power versus time over a cycle.  
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Figure 8 shows, for a complete cycle, the force on the piston crown as a function of time,  synchronised with 

the corresponding displacement response. The maximum value of the displacement response is located by 

the dashed line (in red). To compute the phase difference between the gas pressure excitation force and the 

displacement response, and to establish how much the excitation and response deviate from being pure sine 

waves, Fourier analysis has been undertaken. The phase difference of +4.86° (given in Table 2) was 

calculated in terms of the difference between the fundamental components of the excitation and response. 

Figure 9 shows the first 20 harmonic components (cosine and sine components) of the force associated with 

the gas pressure excitation.  The bottom Figure 9 shows the corresponding magnitudes of force harmonics.   

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8: An excitation (force trace) and displacement response cycle; the dashed line  

locates the maximum of the displacement response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Fourier coefficients for the combustion-gas pressure induced excitation force:  

cosine terms (top); sine terms (middle); magnitudes (bottom). 

 

Figure 10 shows the first 20 harmonic components (cosine and sine components) for the displacement  

response.  The bottom Figure 10 shows the corresponding magnitudes of the displacement harmonics.   

 

5.2 Discussion of Results 
The resonant starting results shown in Figures 2 and 3, confirm that the phase difference using steady-state 

resonance is very different from linear theory. The results show that the nonlinear effects of adiabatic 

compression and expansion, although of weak stiffness compared with the resilient linear spring stiffness,  

significantly  affects  the  phase,  when  excited  at  the (nonlinear)  resonant  frequency  of  78.994 Hz.  The  
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Figure 10: Fourier coefficients for the generator displacement response:  

cosine terms (top); sine terms (middle); magnitudes (bottom). 

 
phase difference between the response fundamental harmonic and the excitation is -15.25°. The effect on the 

phase difference, of adiabatic compression, expansion, and then scavenging (collectively, an augmented 

form of asymmetric nonlinearity), is therefore quite stark, in the sense that it produces a reduction in the 

delay by 74°. Although not discussed in any detail, the system proves extremely sensitive to changes in both 

excitation and frequency.  It is evident that the magnitude of the negative overshoot in the bottom Figure 2, 

would be highly undesirable. Fortunately, alternative resonant starting methods are available [14] which 

when implemented, would not generally require having to wait until a steady-state response displacement has 

been reached (which would take too long and would probably use too much energy). Rather, an optimal 

excitation can be obtained to excite the system in order to rapidly reach the starting amplitude. Nonlinear 

optimal exciter solution methods are available although the computaional demand is not insignificant. 

Nonetheless, the phase difference information obtained here will still be relevant for all the other starting 

methods.  

 

Regarding the self-excited resonant response, the numerical simulation result of +4.86° for the phase 

difference between self-excitation and the response for a conditionally-stable power cycle, provides an 

answer to the importance of phase. It is evident that the phase difference of the fundamental harmonic of the 

self-excitation and the fundamental harmonic component of the displacement response represents a small 

phase advance of  +4.86°. The implications of this finding for making the transition from resonant starting to 

self-excited operation (involving fired combustion) is that when the required displacement amplitude is 

predicted to be reached, fuel injection needs to have started at the beginning of that particular cycle. 

Consequently, the resonant starting excitation must end, and a spark event must appropriately occur, before 

the advance phase angle of the displacement is reached.  

 

6 Conclusions 
The phase differences between the excitation force and the response of a resonating free piston engine 

generator, have been examined  by numerical simulation, for both resonant starting, and self-excited resonant 

combustion. The resonant starting results show that the system is highy sensitive to small changes in 

amplitude and frequency. The results also show for resonant starting, that for harmonic excitation at the 

(nonlinear) resonant frequency, the response is moderately delayed, almost in phase with the excitation   

Under resonant operating conditions, the phase difference between the fundamental harmonic of the self-

excitation and the fundamental harmonic component of the displacement response is very small, suggesting 

the excitation and response are almost in phase. The implications of this finding for making the transition 

from resonant starting to self-excited operation (involving fired combustion), is that when the required 

displacement amplitude is predicted to be reached, fuel injection needs to have already occurred, and 

appropriate spark timing chosen. 
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