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Abstract 
Machine fault diagnosis is crucial in industrial systems to enhance reliability, lifetime, and service availability. 

Intelligent fault diagnosis (IFD) using artificial intelligence (AI) techniques has emerged as a promising 

approach for automating machine health assessment and reducing labor costs. One approach to improve fault 

diagnosis accuracy, which has become a highly relevant research topic, is to use multi-data fusion, which 

combines information from multiple sources to make a more informed decision. However, there is a lack of 

research focusing on the detection of combined machinery faults from multiple sensors. Indeed, when 

combined (and emerging) faults happen in different parts of the rotating machines their features are deeply 

dependent and the separation of characteristics becomes complex, while multi-sensor information can provide 

more comprehensive fault features to deal with the diagnosis and identification of multiple combined faults. 

This paper presents a comprehensive methodology for diagnosing combined faults using data fusion and 

machine learning techniques. The proposed approach leverages multiple types of sensor data, including 

vibration, current, temperature, and acoustic data, sensors to provide a comprehensive picture of the machine's 

health. Our proposed methodology incorporates an ensemble learning approach and time-domain features to 

improve diagnostic accuracy. The proposed approach is tested on a publicly available dataset of rotating 

machinery with multiple faults. The results indicate that the method is viable and achieves good accuracy and 

efficiency.  

 

 Introduction 

Rotating machinery plays a crucial role in modern industries, including manufacturing, transportation, and 

power generation. The efficient operation of these machines is vital to ensure the continuity of industrial 

processes and the safety of workers. However, rotating machinery is prone to various types of faults that can 

result in unexpected downtime, production losses, and safety hazards. Therefore, timely and accurate diagnosis 

of machinery faults is essential to reduce maintenance costs and ensure the reliability and availability of 

machines. Diagnostic is typically a reactive action performed after a fault or problem has already occurred. 

The purpose of fault diagnostic is to identify the cause of the problem or fault so that it can be addressed and 

resolved [1].  

In recent years, Intelligent Fault Diagnosis (IFD) has emerged as a promising approach to improve the 

accuracy and efficiency of machinery fault diagnosis. Several studies have explored the applications of 

Artificial Intelligence (AI) techniques such as machine learning, pattern recognition, and signal processing, in 

machine fault diagnosis, highlighting its potential for enhancing diagnostic accuracy and enabling automated 

fault recognition. Notably, Y. Lei et al. [2] conducted a comprehensive review and roadmap of machine 

learning applications in machine fault diagnosis, providing valuable insights into the current state of the field 
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and outlining future research directions. R. Liu et al. [3] also conducted a noteworthy review on the use of 

artificial intelligence for fault diagnosis of rotating machinery. Their review focused specifically on the 

application of artificial intelligence techniques, including machine learning, in diagnosing faults in rotating 

machinery. These reviews collectively underscore the growing interest in applying artificial intelligence 

techniques to fault diagnosis in rotating machinery. By leveraging the insights gained from these seminal 

reviews, this paper contributes to the existing body of knowledge by presenting a comprehensive methodology 

for diagnosing combined faults in rotating machinery using data fusion and signal processing techniques. 

 While IFD has shown significant success in detecting single faults in rotating machinery, diagnosing 

combined faults remains a challenging problem. Combined faults occur when multiple faults occur 

simultaneously or sequentially in different parts of the machine, and their features are deeply interdependent 

[1], making them difficult to separate and identify. Therefore, detecting combined faults requires integrating 

information from multiple sources and fusing it to extract more comprehensive fault features. Multi-source 

information fusion is a promising technique for diagnosing combined faults in rotating machinery, it involves 

combining data from multiple sensors, such as vibration, current, temperature, and acoustic sensors, to improve 

the accuracy and robustness of fault diagnosis. Therefore, combining machine learning and deep learning with 

multi-source information fusion techniques can further improve the accuracy and reliability of machinery fault 

diagnosis, providing significant benefits to the industry. 

This article presents a comprehensive methodology for diagnosing combined faults using data fusion and 

machine learning algorithms. The methodology involves data acquisition, data pre-processing including direct 

data fusion, and feature extraction. To perform the classification of faults, we use machine learning algorithms 

such as Logistic Regression, k-Nearest Neighbor (kNN), and Gaussian Naïve Bayes, which are trained on the 

extracted features. Finally, we combine the different decisions obtained from the different algorithms using 

stacking ensemble learning technique to increase the overall accuracy of the diagnosis. The proposed approach 

is applied to a publicly available dataset to evaluate its effectiveness in diagnosing combined faults. The results 

indicate that the method is viable and achieves a good level of accuracy and efficiency. The paper also 

discusses the challenges and limitations of data fusion techniques for intelligent fault diagnosis, while 

highlighting potential areas for improvement and suggesting future research directions. 

 

 Related Works 

Fault diagnosis in rotating machinery is crucial for ensuring reliable industrial operation. However, 

diagnosing combined faults, where multiple faults occur simultaneously or sequentially in different machine 

parts, presents unique challenges. To address these challenges, data fusion techniques have gained 

significance. Data fusion combines information from multiple sensors to provide a comprehensive 

understanding of machine health. This subsection explores notable works in data fusion techniques for fault 

diagnosis in rotating machinery, showcasing advancements in addressing the complexities of diagnosing 

combined faults. 

 

 Data Fusion Techniques 

Multi-source information fusion, also known as multi-sensor fusion or information fusion, is a concept that 

originated in the mid-1980s and was initially developed for military applications. The Joint Directors of 

Laboratories (JDL) model proposed by the US Department of Defense Data Fusion Joint Command Lab [4] 

[5], which is considered the first fusion model in the field of data fusion, provides a framework for 

understanding the process of information fusion. The JDL model involves detecting, combining, and 

estimating multi-source data to improve the estimation accuracy, assess the situation, and evaluate information 

completeness and importance, enabling the extraction of meaningful insights and the generation of reliable 

results. Based on the abstraction level of data fusion, the process of information fusion can be divided into 

three levels [6]: data fusion, feature fusion, and decision fusion. At the data fusion level, raw sensor 

measurements or observations from multiple sources are combined to form a more comprehensive dataset. 

Feature fusion involves the integration of extracted features from individual sensor data, where relevant 

characteristics are combined to form a more informative representation of the underlying phenomena. Finally, 
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decision fusion focuses on combining the decisions or outputs from multiple information sources to arrive at 

a final decision or inference. Within the domain of fault diagnosis for rotating machinery, several studies have 

investigated the application of data fusion techniques at these different levels. 

Some studies in fault diagnosis of rotating machinery have explored the fusion of vibration and acoustic 

data. For instance, M. Khazaee et al. [7] proposed a feature-level fusion approach using wavelet transform and 

artificial neural networks for fault diagnosis of a planetary gearbox. R.S. Gunerkar et al. [8] focused on the 

classification of ball bearing faults using vibro-acoustic sensor data fusion. The authors employed time-domain 

features. Furthermore, principal component analysis (PCA) was utilized to select the most suitable features 

from the feature set. You He et al. [9] developed a deep multi-signal fusion adversarial model based on transfer 

learning and residual network for axial piston pump fault diagnosis, where vibration and acoustic data were 

fused. The study specifically emphasized the significant benefits of utilizing deep learning techniques, 

including the application of a residual neural network. These studies demonstrate the effectiveness of 

integrating vibration and acoustic data to improve fault diagnosis accuracy in rotating machinery.  

In addition to vibration and acoustic data fusion, researchers have explored the fusion of vibration and 

current data for fault diagnosis in rotating machinery. J. Cui et al. [10] proposed M2FN, an end-to-end multi-

task and multi-sensor fusion network for intelligent fault diagnosis. They demonstrated the effectiveness of 

fusing vibration and current data in accurately identifying and classifying faults. S. Liu et al. [11] employed a 

feature-level fusion approach in their study, the objective of this fusion was to enhance the fault diagnosis 

process and improve the accuracy of the results.  

Researchers have also explored the fusion of a single type of signal for improved diagnostic performance. 

For example, when considering vibration signals, J. Mi et al. [12] proposed a decision-level fusion method 

based on evidence theory, integrating multiple sources of vibration data. Similarly, S. Li [13] introduced an 

ensemble deep convolutional neural network (CNN) model with improved Dempster–Shafer theory evidence 

fusion for bearing fault diagnosis, specifically fusing vibration signals using the D-S evidence theory to 

enhance fault classification accuracy and address limitations of single-model-based diagnosis. 

Alternatively, in the realm of current signal analysis, specifically using motor current signature analysis 

(MCSA), M. Azamfar et al. [14] proposed a data-level multi-sensor fusion approach for gearbox fault 

diagnosis. The study utilized a CNN-based fusion approach combined with the MCSA to improve accuracy in 

identifying and classifying gearbox faults. 

 

 Combined Faults 

Diagnosing combined faults in rotating machinery poses significant challenges due to the complexity and 

interaction of multiple fault types. Researchers have made notable progress in developing methodologies to 

address these challenges. M.Y. Asr et al. [1] used a Non-Naive Bayesian Classifier to successfully identify 

gear and bearing failures. U.I. Inyang et al.  [15] proposed a comprehensive learning approach using vibration 

data to diagnose single and multiple faults across diverse rotating machine components (gearbox, bearing, and 

shaft). M. Islam et al. [16] proposed a reliable multiple combined fault diagnosis scheme for bearings based 

on acoustic signals, utilizing heterogeneous feature models and an improved one-against-all multiclass support 

vector machines classifier. A. Garcia-Perez et al. [17] proposed a condition-monitoring strategy that combines 

vibration and current data for accurate identification of single or multiple combined faults in induction motors, 

including broken bar (BRB), outer race damaged bearing (BD), and unbalanced pulley (UNB). 

In conclusion, while various studies have investigated data fusion techniques for fault diagnosis in rotating 

machinery, there is still a lack of research on large-scale sensor fusion, particularly in the context of 

determining combined faults in different parts of the machinery such as bearings, gears, shafts, rotors, and 

stators. The existing literature has primarily focused on the fusion of vibration and acoustic data, as well as the 

fusion of vibration and current data. However, there is a need for more comprehensive and integrated 

approaches that encompass a wider range of sensor inputs and address the challenges associated with 

diagnosing complex and combined faults in various components of rotating machinery. Future research efforts 

should aim to develop novel data fusion methodologies that can effectively handle multiple sensor inputs and 

provide accurate and reliable fault diagnosis in diverse operating conditions and fault scenarios. 
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 Proposed Methodology  

In this section, we present the methodology employed for diagnosing combined faults in rotating 

machinery. The methodology, illustrated in Figure 1, provides a comprehensive framework for the fault 

diagnosis process. The methodology encompasses data acquisition using multiple sensors, data preprocessing 

techniques such as data-level fusion and feature extraction, model training, and decision-making using 

machine learning and ensemble learning. By following this systematic approach, we aim to achieve accurate 

and reliable fault diagnosis for combined faults in rotating machinery  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Data Acquisition Using Multiple Sensors 

In this step, data is acquired from multiple sensors installed on the rotating machinery. These sensors can 

include vibration sensors, acoustic sensors, current sensors, temperature sensors, or any other relevant sensors 

depending on the specific application. The purpose of using multiple sensors is to capture different aspects of 

the machine's behavior and enable comprehensive fault diagnosis. 

 

 Data Preprocessing 

At this point, the methodology employs data-level fusion to bring together information obtained by different 

sensors for a more holistic understanding of the machine's health status. This step plays an instrumental role 

in capturing complementary sensing information from every source and aids in the enhancement of overall 

equipment insights. Then come to the feature extraction techniques aimed at extracting meaningful attributes 

from this fused data set based on time-domain analysis, frequency-domain analysis, and other relevant methods 

available. The objective is to identify relevant characteristics that can tell apart different fault conditions by 

comparing and analyzing appropriate features extracted from diverse domains. 

 

 Model Training and Fault Classification 

An ensemble machine learning model for fault diagnosis uses pre-processed data as input. Firstly, the base-

level classifiers, including Logistic Regression, K-Nearest Neighbors (KNN), and Gaussian Naive Bayes, are 

trained individually using labeled training data. Secondly, the trained base-level classifiers are combined using 

stacking ensemble learning, which involves training a meta-classifier, specifically Support Vector Machines 

(SVM) is used in the case of this study, on the predictions made by the base-level classifiers. 

 

3.3.1 Logistic Regression  

Logistic regression is a simple and efficient method for binary and linear classification problems [18]. It 

serves as a linear classifier that models the relationship between input features and class probabilities. By 

Figure 1: Flowchart of the proposed combined fault diagnosis method 
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applying a logistic function to a linear combination of the input features, logistic regression estimates the 

probability of a data instance belonging to a specific class. The logistic function, represented by Equation (1), 

calculates the probability: 

𝑃𝑟𝑜𝑏(𝑒𝑣𝑒𝑛𝑡) = 𝑃(𝑋) =
1

1 + 𝑒−𝑔(𝑋)
=  

𝑒𝑔(𝑋)

1 + 𝑒𝑔(𝑋)
 (1) 

Where P(X) refers to the probability of a particular event or outcome occurring given a set of input features 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘), and g(X) represents the logit model. The logit model, as shown in Equation (2), transforms 

the linear combination of input features and their coefficients into the log-odds or logit value:  

𝑔(𝑋) = log (
𝑃(𝑋)

1 − 𝑃(𝑋)
) =  𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 (2) 

Here α, 𝛽1, 𝛽2 … 𝛽𝑘, are the regression coefficients estimated using maximum likelihood estimation.  

 

3.3.2 k-Nearest Neighbors (kNN)  

k-Nearest Neighbors (KNN) is a popular machine learning algorithm used in various fields, including fault 

diagnosis in rotating machinery [19] . It is a non-parametric algorithm belonging to the category of instance-

based learning [20]. KNN is a simple and supervised machine learning algorithm, capable of solving both 

classification and regression problems [21]. The algorithm works by measuring the distance between a test 

sample and the labeled training samples in the feature space. The KNN algorithm then assigns the test sample 

to the majority class among its K nearest neighbors. The choice of K, the number of nearest neighbors, is a 

hyperparameter that can be tuned to optimize the algorithm's performance. 

 

3.3.3 Gaussian Naive Bayes  

Gaussian Naive Bayes classification is a variant of the Naive Bayes algorithm that assumes a Gaussian 

distribution for the continuous feature values given the class label [22]. It utilizes Bayes' theorem to calculate 

the probability of observing a specific value in a feature, given the class label. Each feature is characterized by 

its mean (µ𝑦) and variance (𝜎𝑦
2) within a specific class label (𝑦). The probability of observing a specific value 

(𝑥𝑖) in the 𝑖𝑡ℎ feature, given the class label 𝑦, is computed using the normal distribution equation: 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒
−

(𝑥𝑖−µ𝑦)2

2𝜎𝑦
2

(3) 

This equation represents the probability density function (PDF) of the normal distribution.  

 

3.3.4 Stacking Ensemble Learning Classifier   

In ensemble learning, stacking is a popular technique that combines multiple base-level classifiers to create 

a meta-classifier that yields improved predictive performance [23]. Each base classifier makes predictions on 

the input data, which are then combined using a meta-classifier to generate the final prediction. In the context 

of this work each base classifier, including Logistic Regression, KNN, and Gaussian Naive Bayes, is 

individually trained using labeled training data. These algorithms learn the relationships between the input 

features and the corresponding fault labels, enabling them to make predictions on unseen data. 

In this approach the meta-classifier Support Vector Machines (SVM) algorithm, is trained to take the 

predictions from the base classifiers as input features and learn to make the final decision. The stacking 

ensemble model leverages the collective knowledge of the base classifiers to improve the overall fault 

diagnosis performance by aggregating their predictions.  

 

 Fault Diagnosis Results For Test Dataset 

The trained models make predictions on the test data, classifying the fault conditions present in the rotating 

machinery. The fault diagnosis results are evaluated based on predefined performance metrics, such as 
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Figure 2: Row vibration signals (a) healthy condition, (b) Inner 

Race (IR) fault 0.014 inch, (c) IR 0.021 inch (d) IR 0.007 inch 

accuracy, precision, recall, and F1-score to assess the effectiveness of the methodology in accurately 

identifying combined faults. 

 

 Results and Discussion 

 Experimental Setup 

The CWRU dataset from Case Western Reserve University Laboratory includes vibration data collected 

from multiple accelerometers placed around a bearing motor. the experimental setup used for data acquisition 

of rolling bearings from the CWRU dataset is illustrated in Figure 2. The dataset replicates actual bearing 

failures caused by electric sparks and encompasses various operating conditions. Faulty bearings with known 

fault depths (0.007 inch, 0.014 inch, or 0.021 inch) are included, and accelerometers are positioned at the drive 

end (DE), fan end (FE), and base (BA) of the motor. Time series data is available at sampling frequencies of 

12k or 48k, capturing different load types and motor speeds.  

In this work, we only consider data acquired at 48 kHz sampling frequency, 1 horsepower external load, 

and with 1772 rpm speed value. The faults under consideration are located at the drive end, specifically the 

inner race, outer race and ball fault. To simulate the case of diagnosing multiple faults, we consider a total of 

10 fault classes at the drive end bearing. The vibration signals captured from the DE bearing given in Figure 3 

showcase the normal healthy condition versus the inner race fault with different fault depths. Although the 

dataset used in this study lacks multi-source data fusion, it enables the evaluation of the proposed methodology 

for combined faults by considering multiple fault classes within the vibration data alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 Performance Assessment of the Suggested Methodology 

Based on Figure 3, it is challenging to discern the distinctions between different faults, making diagnosis 

difficult. Consequently, it is necessary to extract relevant features from the raw signals to facilitate accurate 

classification. A total of 9 time domain features including statistical ones have been extracted in our analysis. 

These features encompass maximum value, minimum value, mean value, standard deviation, root mean square 

value (RMS), skewness, kurtosis, crest factor, and form factor. Detailed information regarding the data splitting 

and different fault classes can be found in Table 1. 

Fault type Fault size/inch Label Test dataset size Training dataset size 

Ball fault 0.007 C1 75 155 

 0.014 C2 75 155 

 0.021 C3 75 155 

Inner race 0.007 C4 75 155 

 0.014 C5 75 155 

 0.021 C6 75 155 

Normal - C7 75 155 

Outer race 0.007 C8 75 155 

 0.014 C9 75 155 

 0.021 C10 75 155 

Table 1: Information about the experimental dataset taken from CWRU's data 

(b) (a) 

(c) (d) 

Figure 3: Experimental setup of the 

bearing motor of the CWRU Dataset 
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The study employed a methodology for diagnosing combined faults in rotating machinery, incorporating 

data acquisition, preprocessing techniques, machine learning, and ensemble learning. Despite lacking multi-

source data fusion, the CWRU dataset still allowed for the evaluation of the proposed methodology by 

considering multiple fault classes within the vibration data alone, resulting in a perplexing yet innovative 

approach.  

The results showed promising performance across different algorithms. Figure 5 presented a bar plot 

showcasing the accuracy of each algorithm used in the study. The mean accuracy values, represented by blue 

dots, served as a visual reference for comparing the performance of different classifiers. Additionally, the error 

bars accompanying the mean accuracy values offered an indication of the standard deviation, capturing the 

variability around each mean. This information provided a comprehensive perspective on the accuracy 

measurements, helping to assess the robustness of the classifiers. 

 Among the base classifiers, the Logistic Regression achieves the highest accuracy of 94.2% followed 

closely by the KNN algorithm with 93.2% accuracy. Gaussian Naïve Bayes achieved an accuracy of 92.4%. 

However, the most impressive results were obtained from the Stacking Classifier, which achieved an accuracy 

of 97.2% and high precision, recall, and F1-score. The stacking approach, combining predictions from multiple 

base classifiers, proved highly effective in accurately diagnosing the 10 classes of faults based on the testing 

dataset. To gain deeper insights into the Stacking Classifier's performance, a confusion matrix is presented in 

Figure 4. The confusion matrix revealed a high number of correct predictions along the diagonal, indicating 

that the classifier accurately identified the 10 fault classes in the testing dataset. Furthermore, the convergence 

of the learning curves given in Figure 6 indicates that the model gradually improved its generalization 

capability, thereby reducing the performance gap between the training and test sets. This convergence is a 

Algorithm Accuracy Precision Recall F1-score 

Logistic Regression 0.942 0.94 0.94 0.94 

KNN 0.932 0.93 0.93 0.93 

Gaussian Naïve Bayes  0.924 0.93 0.92 0.92 

Stacking Classifier 0.972 0.97 0.97 0.97 

Table 2: Comparative analysis of various trained algorithms 

Figure 5: Confusion matrix of the stacking 

classifier on testing dataset 

Figure 4: Bar plot comparing classifier accuracy: 

a visual analysis 

Figure 6: Learning curves of the 

stacking classifier 
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positive indication that the model effectively learned from the training data and was able to generalize well to 

unseen test data. These findings highlight the effectiveness of the methodology and the potential of ensemble 

learning for accurately diagnosing multiple combined faults in rotating machinery, contributing to the 

maintenance and operational improvements in various industrial applications. 

 

 Conclusion 

In conclusion, this study presented a comprehensive methodology for intelligent fault diagnosis of 

combined faults in rotating machinery using data fusion and machine learning techniques. Although the 

application of the methodology was carried out on the CWRU dataset, which did not include multi-source data 

fusion as it only utilized vibration signals, it successfully addressed the challenge of diagnosing combined 

faults by considering 10 fault classes in the bearing. Otherwise, by integrating multiple sensor data through 

the direct fusion model and leveraging machine learning algorithms and ensemble learning techniques, the 

proposed methodology can achieve a high level of accuracy and efficiency in diagnosing the multiple fault 

classes. The evaluation results on the vibration dataset demonstrated promising performance, with the 

ensemble learning model, particularly the Stacking Classifier, achieving an impressive accuracy of 97.2% and 

exhibiting high precision, recall, and F1-score. 

While the dataset did not encompass the case of multi-source data fusion, the study effectively demonstrated 

the potential of the proposed methodology in diagnosing combined faults using vibration data alone. However, 

it is important to acknowledge that challenges still exist in accurately diagnosing combined faults, highlighting 

the need for further research to enhance accuracy and reliability. Overall, this study significantly contributes 

to the field of intelligent fault diagnosis by providing a comprehensive methodology and valuable insights for 

future research endeavors in this area. 

 

 Limitations And Future Scope 

Although the presented methodology in this study displays promising outcomes for diagnosing combined 

faults in rotating machinery, there exist a few limitations and possibilities for improvement in the future. 

Limited Dataset Availability, the availability of extensive and heterogeneous datasets is vital in the 

creation and assessment of fusion models. However, procuring accurately labeled datasets encompassing a 

wide range of combined fault scenarios can present significant challenges. As such, future research should 

focus on the collection and curation of comprehensive datasets that effectively capture the complexities and 

variations of combined faults in rotating machinery using a wide range of data sources. 

Scalability and Adaptability, remain major challenges when applied to large-scale industrial systems that 

incorporate numerous sensors and complex fault scenarios. Ensuring the fusion models can handle high-

dimensional data and accommodate evolving fault patterns is of utmost importance. In light of this, future 

research should explore techniques for developing scalable fusion model architectures and adaptive learning 

approaches to enhance their performance in real-world applications. 

Data Uncertainty and Preprocessing, the accurate fusion and feature extraction of data collected from 

multiple sensors is hindered by the presence of noise and variability. In this study, particular data preprocessing 

techniques were implemented; however, it is imperative to explore alternative approaches to improve the 

robustness of fusion models. The establishment of standardized preprocessing methods for various sensors and 

fault analysis scenarios would be advantageous. 

Incorporating Deep Learning Techniques, although machine learning techniques are utilized in this 

study, incorporating deep learning methods can yield valuable insights and elevate the accuracy of fault 

diagnosis. Complex patterns and representations in data can be captured effectively by deep learning 

algorithms, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs). future 

researchers need to explore the integration of deep learning techniques with the proposed data fusion approach 

to uncover hidden relationships and improve the precision of combined fault diagnosis in rotating machinery. 
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