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Abstract 
The goal of this research was to implement a new algorithm for the automatic detection of faults in rolling 

element bearings, in such a way that it does not depend on the estimation of the shaft rotational speed. The 

idea was that the algorithm could be applied under variable and unknown rotational speed conditions. The 

proposed algorithm was based on the detection of phase-relationships between spectral components that 

emerge when an amplitude modulation appears in the gathered vibration. To do that, a mode decomposition 

procedure, as well as the Hilbert transform, was applied in order to estimate a detection coefficient, which 

served as indicator of the presence of the modulation produced by the faults. Lock-in amplifiers were used in 

order to calculate such an indicator. The effectiveness of the method was validated through experiments 

preformed by using simulation and real signals. It was proven that the application of the proposed method 

can lead to an effective detection of the modulation featuring the existence of rolling element bearing faults. 

 
1 Introduction 

Different techniques have been developed in order to detect bearing defects. They are based on the 

application of different techniques, such as signal deconvolution, matching pursuit, spectral coherence, 

wavelet transform, sparse feature identification, and deep learning, which have proved to be effective under 

stationary conditions (constant rotational speed of the shafts) [1-5]. If the rotation speed is variable such 

techniques become in ineffective and more complex algorithms must be applied.  

Order tracking has been validated to be one of the most effective tools under varying rotational speed 

conditions [6]. However, since this method usually requires computing a time-frequency distribution in order 

to estimate the rotational speed signal, the technique must deal with the time-frequency resolution problem.  

An algorithm based on the demodulation of a harmonic of the gear frequency and the subsequent signal 

resampling was proposed in [7]. In [8], the instantaneous rotational frequency was derived from a time-

frequency representation. Other approaches are based on the application of techniques for monocomponent 

decomposition; for example, in [9], an algorithm was implemented for the phase demodulation of one of the 

harmonics of the gear frequency when the rotation speed exhibits high variations. In general, a clear 

understanding about the relationship between the signals resulting from the monocomponent decomposition 

procedure and the mechanical process that produced them cannot be provided by such methods. 

In [10], the rotational speed was estimated from the spectral component given at the rotational frequency 

or some harmonic of it, that is, the spectral component related to the baseband (unmodulated) rotational 

speed signal. The existence and order of such harmonic were identified by performing surrogate tests. This 

procedure requires that the baseband rotational speed signal be given rise at a considerable magnitude, which 

cannot be always provided. 

In [11], the detection of faults in rolling element bearings under nonstationary conditions was proposed 

to be performed through the estimation of the rotational speed from the vibration produced by gears. This 

technique required to be implemented on systems with gears. 
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Then, it is possible to state that the trends of the methods implemented for automatic detection of faults 

in rolling element bearings under variable rotational speed conditions involve the estimation of the rotational 

speed. In contrast, this research is aimed to detect some rolling element bearing faults under variable 

rotational speed conditions without the need of estimating the instantaneous rotational speed. In particular, 

the faults proposed to be detected are both the inner and the outer race faults. 

In this research, Sections 2 and 3 present the model that will be used in order to describe the vibration 

produced by a local fault in a rolling element bearing. In Section 4, the algorithm proposed to perform the 

fault detection is exposed. The methodology implemented for algorithm validation is presented in Section 5 

and the results obtained are shown and analyzed in Section 6. 

 

2 On the vibration produced by a local fault in a rolling element bearing 

When a local fault is running in a rolling bearing, a vibration produced by the impacts of the rolling 

elements on the fault can excite resonances in the bearing and the machine.  By associating the frequency of 

the impacts with the frequencies of impacts produced by a local fault in each bearing component, not only a 

bearing condition assessment is achieved but also the identification of the damaged component can be 

attained. The frequencies of impacts produced by a local fault in each bearing component, called fault 

characteristic frequencies, can be determined by computing well-known expressions. The fault characteristic 

frequencies corresponding to both outer race, BPFO , and inner race, BPFI , of the bearing (these will be the 

faults to be detected in this research) are: 

 

     
  

 
     

  

  
      (1) 

     
  

 
     

  

  
      (2) 

 

which are function of the rolling element diameter (Bd), the mean diameter (Pd), the number of rolling 

elements (Nb), the contact angle (α) and the shaft rotation frequency (  ). Both terms         and         

are called as fault characteristic coefficients. 

In this context, the spectrum of the vibration produced when the shaft rotational frequency is constant 

corresponds to that of an amplitude modulation. Figure 1 shows the theoretical spectrum of the vibration 

produced by a fault on the outer race: it exhibits spectral components centered at some resonance frequency 

      , which are separated by the fault characteristic frequency      . 

 

 

Figure 1: Theoretical spectrum of the vibration produced by a fault on the bearing outer race (constant shaft 

rotational frequency) 

 

In case of a fault on the inner race, Figure 2 shows the corresponding theoretical spectrum. Similarly to 

the fault on the outer race, this figure shows spectral components centered at some resonance frequency 

      , which are separated by the fault characteristic frequency (   ) (see Figure 2). However, in this case an 

additional amplitude modulation, due to the periodic variation (period equal to     ) of the absolute transfer 

function between the fault and the vibration transducer, arises. As result, the theoretical spectrum shows 

additional spectral lines separated by the shaft rotational frequency,   . 
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Most of methods for the detection of such faults failures is based on these spectral characteristic. 

However, if the rotational speed of the shaft is variable, the spectrum characteristic is not longer discrete and 

the fault detection process turns into a complex task. 

 

 

Figure 2: Theoretical spectrum of the vibration produced by a fault on the bearing inner race (constant shaft 

rotational frequency). 

 

3 Model of the vibration signal produced by a local fault in the rolling 

element bearing 

According to [12], the vibration signal produced by a rolling element bearing under conditions of 

variable rotational speed, can be expressed by the following model: 

                    

  

    

 (3) 

where    is the amplitude modulation,      depicts the impulse response stimulated by the local defect 

and      is the noise. The time instant of impulse occurrence is characterized by    and calculated as: 

    
 

   

 

   

    (4) 

where the average angular velocity between the  -th and the (   )-th impulses is given by    ,   is the 

average angle of occurrence of impulses and    is the equivalent jitter in the angular domain. 

 

4 Method proposed for automatic detection of faults in rolling element 

bearings (unknown and variable rotation speed) 

The method proposed for automatic detection of faults in either the outer race or inner race of rolling 

element bearings, in case of variable and unknown rotational speed of shaft, is based on the detection of the 

modulation produced whenever the fault runs. Accordingly, the algorithm addresses the detection of the 

corresponding spectral components. To do that, the product of certain spectral component is averaged in such 

a way that the result is equal to 0 when the modulation is not produced (there is not phase relationship 

between the components), that is, no fault is running.  

The spectral components that are used in order to detect a fault in the outer race are shown in Figure 3. 

This figure shows the spectral components of the modulation produced when a fault is running on such a 

component; these spectral components are given rise at a high frequency band. Besides, an additional 

spectral component is also shown in the figure and used by the algorithm: the spectral component 

corresponding to the frequency at which the rolling elements pass over a fixed point on the outer race (   ). 

This vibration is produced even though the rolling element bearing geometry is perfect. It is caused by the 

rotation of a finite number of loaded rolling contacts between the rolling elements and the bearing races [13]. 

The frequency of this vibration coincides with BPFO.  

In this context, the expression that is used in order to detect an outer race fault is:  

 

                        
                     (5) 
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where       is the Fourier transform of     , computed for a window of size  .   

The spectral components that are used in order to detect a fault in the inner race are shown in Figure 4. 

Similarly to the previous case, this figure shows, the spectral components of the modulation produced when 

a fault is running on the inner race. In this case, a low frequency spectral component that is always present, 

even at very low amplitude, is also used: the spectral component corresponding to the shaft rotational 

frequency,   . Since always there is an unbalanced distribution of residual mass in the shaft that can never be 

completely removed, this spectral component will always exist [14]. Then, the expression that is used in 

order to detect an inner race fault is:  

 

                              
            (6) 

 

 
Figure 3: Spectral components involved in the detection of an outer race bearing fault. 

 

 
Figure 4: Spectral components involved in the detection of an inner race bearing fault. 

 

Based on these ideas, Figure 5 depicts a general diagram of the proposed method. 

The algorithm is focused to the detection of the modulation, whose carrier frequency,   , is equal to the 

resonance frequency,     , excited by the fault and whose modulating frequency,     , is equal to either the 

frequency of the pass of the rolling elements by a fixed point on the outer race,    , when an outer race fault 

is running, or the frequency given by the shaft rotation,   , when an inner race is running. 

In order to carry out the detection procedure, normalized versions of expressions (5) and (6) are proposed 

to use. The idea of using normalized versions, which derive new coefficients called as detection coefficients, 

was previously presented in [15]. The normalization procedure is performed by the following expression: 

 

                            
               

                     
   (7) 

 

where      is the expected value operator and      is the value of the spectral component at the 

frequency   of the analyzed signal. This coefficient takes values between 0 and 1. In case of its application 

on expressions (5) and (6), the higher the signal-to-noise rate (SNR) of the lying modulation, the closer to 1 

the value of the detection coefficient. To calculate the detection coefficient, the vibration signal is split into 

windows and the value of the spectral components is determined for each window. Then, the values of the 

detection coefficients, for both the case of an outer race fault (normalized version of expression (5)) and an 

inner race fault (normalized version of expression (6)), are computed for each window and averaged. High 
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values (close to 1) of the detection coefficients would be indicating the existence of a fault on the outer race 

or on the inner race of the bearing. 

 

 
Figure 5: Algorithm for Automatic Detection of both outer and inner race faults 

 

Under variable rotational speed conditions, the Fourier transform cannot be used to obtain the spectral 

component values. That is why the use of Lock-in amplifiers is proposed, as was performed in [16]. 

According to the diagram shown in Figure 5, in particular following the top branch, the vibration signal 

is firstly band pass filtered in order to remove spectral components that do not fall into the spectral band 

where the modulation must arise in case of bearing fault. This spectral band is a function of the values of the 

bearing natural frequencies (which can be estimated through modal analysis) and the range of variation of 

the shaft rotational frequency. The use of such a filter is optional; however it can lead to a more effective 

result. Subsequently, the decomposition of the vibration signal into monocomponent signals is proposed to 

do. If a bearing fault exists, it is expected that some achieved monocomponent signal corresponds to the 

modulation (with carrier frequency equal to the main resonance frequency) produced by the fault. Next, on 

one hand, the instantaneous frequency of each monocomponent signal,      
 , where   is the number of the 

monocomponent, is obtained by means of the Hilbert transform. And, on the other hand, an amplitude 

demodulation process is applied to each of the monocomponent signals through the application of the well 

known Hilbert transform. If the bearing fault exists, some of the demodulated signals will be given at 

frequency either     or   , depending on whether the fault is running on the outer race or the inner race, 

respectively. Then, a second mode decomposition procedure is executed, in this case, on each demodulated 

signal. If the bearing fault exists, the application of Hilbert transform to each of the obtained demodulated 

monocomponent signals, in order to estimate their instantaneous frequency, will make the instantaneous 

frequency either     or    be achieved. The instantaneous frequency of the monocomponent signal obtained 

as result of the mode decomposition process performed on the demodulated monocomponent signal   will be 

denoted as     
 . Having estimated both      

  and     
 , the detection coefficients corresponding to both outer 

race and inner race faults can be then determined. 

 

5 Experimental work 

Experimental work was carried out through both simulation and real signals. The mode decomposition 

technique employed in the experiments was the Singular Spectrum Decomposition, SSD, since it has been 

successfully applied on vibration analysis [17]. The number of monocomponent signals obtained when this 

technique was applied depended on the threshold selected to stop the decomposition process and the 

spectrum of the signal in question. In the experiments, a threshold ranging between 0.01 and 0.5 was settled. 

5.1 Simulation signals 

The simulation signals were built on the basis of the expression (3). 

The study cases were: 
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 No fault (no modulation signal). 

 Vibration produced by a fault on the outer race plus vibration produced by the pass of rolling 

elements on a fixed point of the outer race. 

 Vibration produced by a fault on the inner race plus vibration produced by the unbalanced shaft. 

A first experiment was performed for the case of constant rotational speed: 30 Hz for the outer race fault 

signal and 50 Hz for the inner race fault signal. The three signals were sampled at 20 kHz. The fault 

characteristic coefficient was 5 (for both the outer and inner race fault signals) and the excited resonance 

frequency was 7 kHz.  

A second experiment addressed the algorithm validation under variable rotational speed conditions: 

increasing from 30 Hz to 40 Hz in case of the outer race fault signal, and increasing from 50 Hz to 60 Hz in 

case of the inner race fault signal. The outer and inner race fault signals were sampled at 10 kHz and 12 kHz, 

respectively. The fault characteristic coefficient was 5 and the excited resonance frequency was 2 kHz.  

For both groups of signals, the bandpass filter employed at the algorithm beginning was set to be 

centered at the resonance frequency and to have a bandwidth equal to 2 kHz.  

White Gaussian noise was added to signals in order to validate the algorithm for different SNRs, in this 

case, 10 dB and 20 dB. Then, the implementation of a statistical analysis could be performed. 

5.2 True signals 
The true signals used in this work corresponded to outer and inner race fault signals, and no-fault signals 

as well, for constant and variable rotational speed conditions. 

A first experiment (for the tests under constant rotational speed conditions) was performed by using 

signals available at [18], which is an online maintenance failure database. Two signals corresponding to an 

outer race fault and two signals corresponding to an inner race fault were used. The shaft rotational speed 

was   25 Hz and the signals were sampled at 48828 Hz for 3 s. Besides, two signals corresponding to no-fault 

signals were also used. In this case, the shaft rotational speed was 25 Hz and the signals were sampled at 

97655 Hz for 6 s. Since, this sampling frequency is twice the sampling frequency applied to fault signals, a 

subsampling procedure was implemented. As result, no-fault signals sampled at 48828 Hz for 3 s were 

obtained. The most significant band occupied by the resonances excited by the bearing faults was found 

around 4 kHz. Then, for these signals the bandpass filter employed at the algorithm beginning was set to be 

centered at 4 kHz; the bandwidth was set to be 6 kHz. 

A second experiment (for the tests under variable rotational speed conditions) was done through signals 

available at [19], which is an online web site that includes signals acquired from a SpectraQuest (MFS-

PK5M) Fault Simulator. The available data includes vibration signals collected under different rolling 

element bearing conditions. The signals were sampled at 200 kHz for 10 s. Signals having the characteristics 

presented in Table 1 [19] were used. 

 

 

Table 1: Characteristics of true signals from [19]. 

 

This dataset of signals was subsampled to obtain new signals sampled at 50 kHz. In this case, the band 

occupied by the most significant excited resonance frequencies was found around 1 kHz. Then, for such 

signals, the bandpass filter used at the algorithm beginning was set to be centered at 1 kHz; the bandwidth 

was set to be 1 kHz. At this point, it is necessary to mention that for the no-fault signals available at [18] and 

[19] the spectral analysis revealed that certain modulation patterns are present in the signals (see Figure 6). 

Since this is not meaning that there is a fault in the bearing, this feature could affect the success of the 

algorithm application, mainly when the frequencies of the involved spectral components are close. 

Operating conditions Shaft rotational speed Fault characteristic coefficient 

Normal condition HA-2 (speed increasing from 14.1 Hz to 29.0 Hz) No-fault signal 

Outer race fault OA-1 ( speed increasing from 14.8 Hz a 21.1 Hz)  3,57 

Inner race fault IA-1 ( speed increasing from 12.5 Hz to 27.8 Hz) 5,43 
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a) b) 

Figure 6. Example of the modulation pattern that appears in a) no-fault signals available at [18] and b) 

no-fault signals available at [19]. 

 

6 Working with simulation signals 

Experimental work was carried out through both simulation and real signals. The mode decomposition 

The result of the work with simulation signals is presented. It should be recalled that 20 realizations of 

signals, per condition (no fault, outer race fault and inner race fault) and SNR (10 dB and 20 dB), were 

simulated.  

However, it should be realized that the noise can make the detection coefficient take either high values 

when the condition simulated corresponds to no-fault state or low values when the condition simulated 

corresponds to the faulty bearing. This could be due to the limitations of the SSD technique to deal with 

signals with low SNR. That is why the indicator more convenient to follow is the frequency at which the 

detection coefficient takes high values rather than a singular value of this coefficient by itself.  

In this work, the detection coefficient is regarded as high when it takes values higher than 0,7. This 

threshold was empirically settled as result of the analysis of the signals under study. However, it can be 

higher or lower which will yield results some different (but corresponding) to those presented in this work.  

The results of the first experiment, performed for the case of constant rotational speed, are presented in 

tables 2 and 3. Tables 2 and 3 show the frequency (percentage) at which high values (higher than 0,7) of the 

corresponding detection coefficient are obtained, for SNR = 10 dB and SNR = 20 dB, respectively. These 

tables reveal that the highest percentages of high values of the detection coefficient are achieved when a fault 

is running. For SNR = 20 dB, the percentages of high values of the detection coefficient, in case of both 

outer and inner race faults were running, were about twice the percentage of high values of the detection 

coefficient achieved when the no-fault condition was simulated. This result was similar to that achieved for 

SNR = 10 dB. The fact that the SNR degradation did not affect significantly the performance of the 

algorithm is very noticeable. 

 

Percentage of the 

number of times 

that high values 

(higher than 0,7) of 

the corresponding 

detection 

coefficient are 

obtained for a 

particular bearing 

condition 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

14,7 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

16,5 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

8,3 % 

 

Table 2: Results obtained from the computation of the detection coefficients in case of simulation signals 

(under constant rotational speed conditions). SNR = 20 dB. 

A
m

p
li

tu
d
e 

A
m

p
li

tu
d
e 

Frequency (Hz) 
Frequency (Hz) 
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Percentage of the 

number of times 

that high values 

(higher than 0,7) of 

the corresponding 

detection 

coefficient are 

obtained for a 

particular bearing 

condition.  

 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

15,5 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

15,8 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

7,7 % 

 

Table 3: Results obtained from the computation of the detection coefficients in case of simulation signals 

(under constant rotational speed conditions). SNR = 10 dB. 
 

The results of the second experiment, performed for the case of variable rotational speed, are presented in 

tables 4 and 5. These tables show results very similar to those obtained in case of constant rotational speed. 

Indeed, such tables confirm that the highest percentages of high values of the detection coefficient are 

achieved when a fault is running. For SNR = 20 dB, the percentage of high values of the detection 

coefficient, in case of outer and inner race faults, were about 2 and 3 times the percentage of high values 

achieved under no-fault conditions, respectively. For SNR = 10 dB, the percentages of high values of the 

detection coefficient, in case of outer and inner race faults, were 1,85 and 1,36 times the percentage of high 

values achieved under no-fault conditions, respectively. In this experiment is visible the performance 

degradation due to noise. 

 

Percentage of the 

number of times 

that high values 

(higher than 0,7) of 

the corresponding 

detection 

coefficient are 

obtained for a 

particular bearing 

condition 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

26,7 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

41,3 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

13,9 % 

 

Table 4: Results obtained from the computation of the detection coefficients in case of simulation signals 

(under variable rotational speed conditions). SNR = 20 dB. 

 

Percentage of the 

number of times 

that high values 

(higher than 0.7) of 

the corresponding 

detection 

coefficient are 

obtained for a 

particular bearing 

condition 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

25,2 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

18,5 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

13,6 % 

 

Table 5: Results obtained from the computation of the detection coefficients in case of simulation signals 

(under variable rotational speed conditions). SNR = 10 dB. 
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7 Working with true signals 

The results of working with real signals are shown in this Section.  

For the first experiment (involving vibration signals gathered under constant rotational speed conditions), 

table 6 presents the results obtained from the application of the proposed algorithm. This table confirms that 

the highest percentages of high values of the detection coefficient are achieved when a bearing fault is 

running. For the signals under study, the percentage of high values of the detection coefficient, in case of 

outer and inner race faults, were about 3,2 and 2,2 times the percentage of high values achieved under no-

fault conditions, respectively. 

 

Percentage of the 

number of times 

that high values 

(higher than 0,7) of 

the corresponding 

detection 

coefficient are 

obtained for a 

particular bearing 

condition 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

71,4 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

50,0 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

22,2 % 

 

Table  6: Results obtained from the computation of the detection coefficients in case of real signals 

(under constant rotational speed conditions). 

 

For the second experiment (involving vibration signals gathered under variable rotational speed 

conditions), table 7 presents the obtained results. Once again, the fact that the highest percentages of high 

values of the detection coefficient are achieved when the fault is running is confirmed. However, for this 

dataset, the mode decomposition technique (i.e., SSD) was not able to deliver any monocomponent in case of 

the signals acquired under no-fault conditions. In the context of the algorithm, this means that no modulation 

appears in such signals and therefore there is not bearing fault. 

 

Percentage of the 

number of times that 

high values (higher 

than 0,7) of the 

corresponding 

detection coefficient 

are obtained for a 

particular bearing 

condition 

Outer race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (5)) 

15,4 % 

Inner race fault. 

(Percentage of high values of the detection coefficient given by the normalized 

version of expression (6)) 

44,4 % 

No-fault 

(Percentage of high values of the detection coefficients given by the normalized 

versions of expressions (5) and (6). Both coefficients are computed per window; 

if at least one of them is high, one high value of coefficient is involved in the 

percentage computation) 

0 % 

 

Table 7: Results obtained from the computation of the detection coefficients in case of real signals (under 

variable rotational speed conditions). 
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9 Conclusions 

In this research, a new method for the automatic detection of fault in roller bearing, in particular both 

outer and inner race faults, under variable and unknown rotational speed conditions was implemented and 

validated. The novelty of this proposal resides in that it also takes into account the presence of low frequency 

vibrations that are always present and are phase-related with the high frequency spectral components 

(modulation) produced when bearing faults are running. 

By the work with simulation and real signals, it was proven that the application of the proposed method 

can lead to an effective detection of the modulation featuring the existence of rolling element bearing faults. 

Although high values of the detection coefficients could indicate the presence of such a modulation, this 

coefficient by itself is not enough to conclude that a fault is running. A more robust indicator in this case is 

the frequency at which high values the detection coefficient is given. That is, as this frequency gets higher, 

the existence of the fault will be more likely. Thus, this indicator must be considered as a relative indicator, 

rather than an absolute indicator, since it is more suitable to be applied on a trend analysis. 
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