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Abstract
In this research, we highlight the importance of the background noise properties in the context of the vibration-
based local damage detection. In the case, when the background noise has Gaussian characteristics, the classical
methods for local damage detection can be applied. However, for many real signals the assumption of Gaussian
distribution of the noise is not satisfied and one may expect the large impulses that influence the noise char-
acteristics. In that case the impulsiveness criteria fail. Since, most of the methods for local damage detection
are based on the autocovariance function properly defined for signals with finite second moment, we indicate
here the important role of the finite variance of the signal and present a new approach for the assessment of the
probabilistic properties of the noise. The methodology is applied for the TF representation of the signals. The
problem is illustrated for the simulated signals from exemplary non-Gaussian distribution.

1 Introduction

In many technical systems, the measurement of any physical variable is performed to acquire some impor-
tant information about an object or a process (called SOI). Although measurement systems are very advanced,
the informative components may be noisy because of the presence of other stronger sources. Even though the
background noise is considered as a non-informative component, its properties can have a significant impact
for further analysis of the signal. We share a novel perspective to the problem of local damage detection and
propose to analyze the probabilistic properties of the noise component as a pre-processing step. The main
attention is paid on the existence of finite variance of the noise distribution. We note that for signals with finite-
variance distribution one can apply methods based on classical measures of dependence (like autocovatiance
function) for SOI detection. On the other hand, if the distribution of the background noise has infinite variance,
the classical techniques may be not efficient. It is worth highlighting that infinite variance of a given distribu-
tion implies the higher moments are also infinite. Thus, the mixture of the SOI and impulsive (non-Gaussian
infinite-variance) noise excludes also impulsive criteria.

We highlight, the considered problem is much more general than the classical goodness-of-fit testing, i.e.
testing if the underlying signal has a given theoretical distribution. In many cases, the identification of the noise
distribution is not possible (as other components may disturb this information).

In our research, to assess the background noise properties we propose a simple technique that is applied for
the time-frequency representation (here spectrogram) of the signal. The approach is based on the statistic called
empirical cumulative fourth moment (ECFM) and the observation that it exhibits irregular chaotic behaviour for
data from infinite-variance distribution while it stabilizes for data with finite variance. This specific behavior
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of ECFM is a starting point for the algorithm proposed in this research. In this extended abstract we present
the results for the simulated signals from selected non-Gaussian distribution (t location-scale), however, the
extended analysis 9also for real signals) one can find in [1, 2].

2 Methodology

The ECFM statistic is defined as follows

C(k) =
1
k

k

∑
m=1

(xm −me(x))4, k = 1,2, · · · ,n, (1)

where x1,x2, · · · ,xn is the considered signal of independent identically distributed (i.i.d.) observations and
me(x) the corresponding sample median. As it was mentioned, the methods for local damage detection are
mostly based on the analysis of the signals in TF domain. Thus, we propose to apply the presented procedure
to the time-frequency representation (spectrogram) of a given signal. However, this algorithm can be also
applied for identification of infinite-variance behavior for signals in any other domains, see [2]. We remind, the
spectrogram S(·, ·) is a square of the absolute value of STFT

S(t, f ) = |ST FT (t, f )|2, ST FT (t, f ) =
n

∑
m=1

xmw(t −m)e−i2π f m
n , (2)

where w(·) is a given window, t ∈ T is time point and f ∈ F is frequency. The procedure for finite-variance
assessment consists of the following steps. 1) First, we transform the signal x1,x2, · · · ,xn to TF domain (spec-
trogram). 2) Next, we select the frequencies corresponding to the noise component. We denote this set as F̃ .
3) For each f ∈ F̃ we normalize the vector S(·, f ). 4) Next, for each vector S(·, f ) we calculate the ECFM
statistic. 5) In the next step, for each f ∈ F̃ we identify the segments of the ECFM statistic between the jumps.
6) For each f ∈ F̃ we select the last ”long” segment of the ECFM statistic. The corresponding vector (segment)
we denote as D(·, f ). 7) For each f ∈ F̃ we fit the straight line to the vector D(·, f ) using the least squares
method. The estimated value of the slope parameter for frequency f we denote as a f . 8) Finally, we analyze the
distribution of the estimated slopes along the selected frequencies to asses the background noise properties.

3 Results for simulated signals

We analyze the vector of independent observations from t location-scale T (ν ,δ ) distribution defined
through the probability density function

f (x) =
Γ
(

ν+1
2

)
δ
√

νπΓ
(

ν

2

) [ν + x2

δ 2

ν

]−( ν+1
2 )

, x ∈ R, (3)

where Γ(·) is the gamma function, ν > 0 is a shape parameter and δ > 0 is a scale parameter. The variance
for t-location scale distribution is finite for ν > 2. Otherwise, it is infinite. However, when we analyze the data
from T (ν ,δ ) distribution in TF representation (spectrogram), the finite variance we expect for ν > 4 and for
other cases the variance is infinite, see [1, 2] for more details.

In Fig. 1 (top panel) we demonstrate the exemplary simulated signals (of length 10000 observations) from
T (ν ,δ ) distribution. We consider three vales of parameters responsible for heavy-tailed behavior, namely
ν = 6 (Fig. 1, left top panel), ν = 3 (Fig. 1, middle top panel) and ν = 1.5 (Fig. 1, right top panel). In each
case we assume δ = 1. Let us emphasize that ν = 6 corresponds to the finite-variance case while for ν = 1.5
we have infinite-variance distribution (in time and TF domain). In the middle top panel of Fig. 1 we present
the intermediate case, i.e. for ν = 3 the t location-scale distribution has finite variance in time domain while in
TF domain it transfers to infinite-variance case. In the bottom panel of Fig. 1 we demonstrate the spectrograms
of the simulated signals.

For each considered case, we simulated signals of length 10000 from T (ν ,δ ) distribution and applied
the presented above procedure. Finally, we calculated the median of the obtained a f values (estimated for all
frequencies from spectrogram). In Fig. 2 we present the distribution of the medians of the slopes a f calculated
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Figure 1: Examples of simulated signals from T (ν ,δ ) distribution (top panels) and the corresponding spectro-
grams (bottom panels).

Figure 2: The distribution of the slopes a f for simulated signals from T (ν ,δ ) distribution.

for 1000 simulated signals from the considered cases. One can conclude that there are clearly visible significant
differences between the values of a f estimated for distribution with finite- and infinite- variances. To underline
the differences between the considered cases we also calculated the medians of the values presented in Fig. 2.
For finite variance case (i.e. when ν = 6) the median of a f values is equal to e−2 while for the infinite-variance
case (i.e. when ν = 1.5) it is equal e10. The differences we also see in the IQR statistic, considered as the
dispersion measure. For the finite-variance case the IQR of the values presented in Fig. 2 is equal to e−4 while
for the most extreme case (i.e. when ν = 1.5) - it is equal to e15.

4 Conclusions

In our research, we present another perspective for local damage detection and indicated that the properties
of the background noise are significant for the selection of the appropriate tools. We propose a simple approach
and demonstrate its efficiency for simulated signals from t location-scale distribution which may have finite-
and infinite-variance. More deeper analysis, also for real signals, are presented in our ongoing paper [1].
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