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INTRODUCTION 

In the coming years, the aviation industry is expected to face several challenges, such as pilot 

shortages due to traffic increases or the need to reduce operational costs. This context points 

towards the development of Single Pilot Operations (SPOs; Myers & Starr, 2021). Such 

situation encourages research on systems capable of supporting pilots in their tasks because, 

otherwise, the pilot should assume alone the tasks carried out by two people (cf. Mosier et al., 

2001). Even if SPOs are finally not adopted, the research and scientific discussion in this field 

would still be beneficial (Neis, Klingauf & Schiefele, 2018) and the introduction of SPO-

supporting systems in traditional cockpits should translate into safer operation of aircraft. For 

instance, to develop procedures and technologies to assist the remaining pilot in case of 

incapacitation. 

 

One possible solution would be automation, which could reduce the workload of the crew (or 

the pilot in SPOs; Tokadlı, Dorneich, & Matessa, 2021). However, the reduction of situation 

awareness due to automation is a well-documented problem in aviation (Sikora et al., 2020). 

This could be particularly relevant when the activities carried out by automated systems are not 

clearly notified to the crew, isolating them from the operation of the aircraft. Such a situation 

may lead to a divergence between the actual aircraft state and the pilot mental model of the 

aircraft (Silva & Hansman, 2015). Pilots should be given the necessary information to be able 

to properly calibrate their confidence on aircraft systems (Okamura & Yamada, 2020). Also, 

the automation bias, defined as the overreliance in automation and the replacement of a standard 

decision-making process by “the use of automated cues as a heuristic” (Mosier et al., 2017, p. 

47), should be considered. Thus, automation needs to maintain the pilot in an active decision-

making role with a sufficient level of readiness to react properly to any situation that may arise 

(Bilimoria et al., 2014). 

 

The selected use case for this paper is a situation that illustrates this need for assistance in taking 

the proper action during the last segment of the flight. At an altitude of 1,000ft, the pilots need 

to evaluate the stability of the approach and decide whether to land the aircraft or perform a go-

around, i.e., abort the landing. A landing approach is considered unstable when there are 

significant trajectory or speed deviations. This phenomenon was a factor in approximately 10% 

of all airplane accidents that occurred between 2011 and 2016 (IATA, 2016).   

 

To cope with such critical situations, one possible solution is to generate an expert decision-

making model able to support the pilots. This can be done through policy capturing, which uses 

statistical or machine learning methods to model the human decision-making process and 

generate a decision from a set of predictors (Lafond et al., 2017). Thales Research and 

Technology Canada developed Cognitive Shadow, a prototype system that models the decision-

making patterns of the user, updates this model continuously, and notifies the user of any 

discrepancy between the model and the user’s current decision (Lafond et al., 2020). The 
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addition of Cognitive Shadow suggestions can generate a joint human-machine cognitive 

system that is more precise than each of its components (Lafond et al., 2017). The resulting 

system can learn continuously and automatically, which is a key feature of cognitive systems 

(Christensen et al., 2010). Cognitive Shadow has been previously applied to simulation of 

maritime decision support (e.g., Labonté, et al., 2020) and to gaming with “opponent modeling” 

(Lavoie-Hudon et al., 2021).  

 

The current paper presents ongoing work aimed at developing a policy capturing tool to support 

pilots’ decisions in high-fidelity, dynamic situations. Firstly, we report our findings from a 

feasibility study involving modeling critical decisions during an unstable approach simulation. 

Secondly, we discuss key human factors and cognitive engineering issues to be addressed to 

de-risk the application of the Cognitive Shadow solution in the avionics domain. 

 

PILOT EXPERIMENT 

Method and Procedure 

Four expert (mean experience = 18.8 years) and fit-to-fly pilots participated in the experiment. 

For 3h each, they faced as many unstable approach simulations as possible. The scenarios were 

selected from a set of 24 unstable approaches of which half were prone to a go-around decision 

and half to a landing decision. Terrain and meteorological conditions i.e., wind direction and 

velocity as well as presence or absence of clouds, precipitations, and wind shear changed across 

the different simulations. These scenarios and conditions were distributed quasi-randomly 

through simulations to ensure that participants were exposed to different situations. The 

simulations were run in X-Plane 11. The aircraft was a typical single aisle model. As shown in 

Figure 1, two screens were used to display the simulation. The one on the right displayed the 

out of the window view and the one on the left displayed a set of flight instruments: Electronic 

Flight Instrument System and its control panel, Flight Control Unit, Multi-function Control 

Display Unit. Data from the simulation was sent via UDP protocol and collected by a real-time 

processing nexus app (Sensor Hub; Gagnon et al., 2014). It was then sent through web socket 

to a tailored app for preprocessing and then, sent to the Cognitive Shadow web app via API 

REST to be recorded as features to allow capturing expert judgment policies.  

Figure 1: Experimental setup. 

 

Following the explanation of Cognitive Shadow and the experimental procedure, the 

experimenter started the simulation. Pilots were asked to perform an approach that would lead 

to the selected result, i.e., a go-around or a landing. At an altitude of 1,000ft, the experimenter 

would stop the simulation and asked the pilot for their decision, i.e., landing or going around, 
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while considering the current state of the situation. If the pilot decided to go-around, a new 

simulation was started. Otherwise, the simulation continued until the aircraft was at 500ft 

altitude where the simulation was again paused, and the experimenter asked the pilot about their 

decision on whether to go-around or to land. 

 

Results and Discussion 

The number of scenarios faced by each pilot ranged between 5 and 30 decisions for a total of 

65, of which 29 were landing continuations and 36 were go-arounds. Data from two decisions 

could not be retrieved. We then established a group model comprised of all the decisions of the 

four pilots, containing 63 decisions (27 go-around and 36 continue). Table 1 depicts the results 

of each of the seven Cognitive Shadow models. Given the low number of decisions, the 

accuracies of the models were computed by a leave-one-out cross-validation approach. The 

support vector classifier was the best performing, reaching an accuracy of 99.8%. It should be 

borne in mind that due to the low number of decisions we could not validate the models with 

an unseen test dataset (ie., although the models learned only from the training dataset, the hold-

out validation dataset did inform hyperparameter optimization). Thus, there is a risk of model 

overfitting and replication with a larger dataset in future studies is necessary. However, similar 

accuracy levels (i.e., above 95%) were reached by the Cognitive Shadow in a high-fidelity 

simulation in the maritime surveillance domain with such small sample sizes (Chatelais et al., 

2020). Despite this limitation, the present results demonstrated the feasibility of collecting live 

data from a high-fidelity simulator to feed a policy capturing system for real-time cognitive 

modeling and decision support.  

 
Model Global accuracy Decision Precision 

Naïve Bayes  58.7 
Continue 58.0 

Go-around 100 

Decision tree 95.8 
Continue 94.6 

Go-around 97.6 

K-nearest neighbor 97.4 
Continue 97.4 

Go-around 96.4 

Support vector classifier 99.8 
Continue 99.7 

Go-around 100 

Logistic regression 67.3 
Continue 65.0 

Go-around 77.9 

Neural network 88.2 
Continue 84.8 

Go-around 94.6 

Random forest 91.3 
Continue 88.5 

Go-around 96.0 

 

Table 1: Global accuracy and decision-dependent precision (in %) of the seven models 

generated by the Cognitive Shadow to predict pilots’ decisions in the X-Plane 11 simulation. 

 

SCIENTIFIC DE-RISKING FOR AVIATION APPLICATIONS 

Future work will focus on the effects and challenges of introducing in the cockpit support 

systems such as Cognitive Shadow from a human factors’ perspective. Particularly relevant are 

the calibration of confidence (McGuirl & Sarter, 2006; Okamura & Yamada, 2020), the 

automation bias (Mosier et al., 2017), and several human factors-related issues such as the 

maintenance of situation awareness and the optimal format of suggestions to ensure adequacy 

to the situation and pilots’ understanding (Degas et al., 2022).  
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Confidence in decision support systems depends not only on their design, but also on the users 

and on the environment in which they navigate (Hoff & Bashir, 2015). Thus, the means to build 

confidence in an automated system need to adapt to the specific characteristics of the studied 

situation. These means include ensuring the user’s comprehension of the system and its 

suggestions or providing ongoing confidence feedback (Hoff & Bashir, 2015). However, each 

of these methods has its own weaknesses. Using the system and observing the absence of error 

may lead to overconfidence (McGuirl & Sarter, 2006). The use of confidence metrics has been 

shown to improve decision-making of expert pilots (McGuirl & Sarter, 2006) yet was found to 

have no impact on novices (Lafond et al. 2020). Thus, further research is needed to better 

understand the factors and dynamics leading to appropriate levels of trust. 

 

Cognitive Shadow is proposed as a warning system, intervening only when a pilot deviates 

from the expected decision pattern as the intent is to keep the pilot in charge. This functioning 

has shown its benefits compared to a continuous suggestion mode (Labonté et al., 2020). Model 

output justifications based on SHapley Additive exPlanations (SHAP) values have been added 

to the Cognitive Shadow’s feedback capability. These values are a measure of each factor’s 

importance on the system output (Lundberg & Lee, 2017) aiming at helping the pilot understand 

the situation parameters deemed critical by the model and take a more informed decision. 

 

It is also of relevant in the development of cognitive assistants to study their potential use in 

pilot training. The use of systems based on models of expert behavior capable of giving online 

feedback to pilots in training is certainly an option worth exploring. Policy capturing systems 

may help by identifying weaknesses in the trainees’ decision-making, but also by providing 

timely online suggestions and justifications on what experts would have done. The use of 

Cognitive Shadow in training situations will need a specific evaluation of the previously 

analyzed design factors associated with it.  

 

CONCLUSION 

Modelling the decision-making process of aircraft pilots allows developing tools capable of 

supporting and training them. In this paper, we presented the results of a feasibility study 

showing the ability of such a system to model the decision-making process of a small group of 

pilots in a critical situation, i.e., an unstable approach. Despite the minimal number of decisions 

used for training, preliminary results showed great promise in terms of predictive accuracy and 

demonstrated the technical feasibility of online policy capturing in a high-fidelity dynamic 

environment. Different human factors aspects need to be addressed to integrate such a tool to 

operational situations. How this system should be integrated into the cockpit and how it could 

be used to train future pilots are key questions to be investigated in future studies. 
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